簡易檢索 / 詳目顯示

研究生: 張譽耀
Yu-Yao Chang
論文名稱: 以訊息為中心之物聯網資料運算機制研究
Scalable Data Processing in Information Centric for IoT
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 黎碧煌
Bih-Hwang Lee
林宗男
Tsung-Nan Lin
郭耀煌
Yau-Hwang Kuo
楊竹星
Chu-Sing Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 89
中文關鍵詞: 資源分配資料分類物聯網中介系統物聯網任務排程
外文關鍵詞: Resources Allocation, IoT Middleware, Job Classification, Internet of Things, Task Scheduling
相關次數: 點閱:329下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著雲霧運算的發展,網際網路的服務型態也隨之改變,不同於以往點對點連接之服務,雲霧運算將成為未來主要的服務型態,形成由使用者主導之多元化服務。然而無線通訊技術的進步,物聯網概念也隨之迅速發展,目前已廣泛應用於智慧建築、工業自動化與生醫資訊等環境中。近年來,智慧型行動裝置的普及化也成為物聯網與雲端的發展助力,基於智慧型行動裝置的可攜性、無線通訊與行動運算等優點,藉由物聯網與之相互結合,衍生出更豐富且創新的應用服務,達到智慧生活的發展目標。
    本研究致力於雲運算與霧運算之資源分配與任務排程研究,該研究係於雲霧資源效能分析機制,藉以分析雲霧資源使用狀態,並同時建立管理者模組,實現雲霧運算之資源分配,從而實現雲霧混合系統架構之最佳資源分配運作。此外,本研究藉由管理者的任務排程機制,透過目標函式來計算最小成本,使物聯網裝置可依所求來達到最好的服務品質,藉以打破既有之物聯網分散概念,實現新一代通訊網路應用服務。
    本研究提出一個以訊息為中心之物聯網架構,包含中介層與管理者,透過物聯網中介層進行裝置監控,並將物聯網代理人與資料分類建立於中介層內。隨著物聯網裝置啟動,物聯網裝置透過代理人傳輸至中介層,並交由資料分類模組進行分析,運用雲霧監控模組比較資源結果,最後透過管理者之任務排程與資源分配模組來判定資料運算方式。根據研究結果顯示,本研究所提出之資源分配可有效分配資源的使用率,提高雲霧混合系統架構的工作效率。其次,最後所提出之資料分類進行分析,將不同的優先權資料處理,相較於沒有優先權機制的系統,更能確保資料不互相搶奪資源,且同時達成服務層級協議(Service Level Agreement)之目標,並於高優先權資料與未依優先權資料分類之運算時間上相互比較,能改善42.28%。


    With the rapid development of wireless communication technology, the concept of the Internet of Things (IoT) has gained increasing attention. The concept of IoT is extensively applied to smart buildings, industrial automation and biomedicine. Cloud computing has emerged as an important issue because of changes by typical network services. Nowadays, cloud computing has provided users with diverse and highly flexible application services. Recently, Wireless communication and Cloud-Fog computing enable smart things to be easily connected to the IoT and increasing number of creative IoT applications and services are approaching to achieve the goal of smart living.

    This study proposes an architecture for an information centric IoT system with agent management and job classification implemented in the IoT middleware. The concept of the agent management is used to control the IoT and the job classification is used to categorize data by different types. However, the resource allocation and task scheduling mechanism are implemented in the IoT manager. The concept of the resource allocation is used to optimize the distribution of fog and cloud utilization network in dynamic Cloud-Fog computing system and task scheduling , in order to find out the minimum cost for each resource. This two mechanism support a new generation of communication network services so as to fulfill the goal of optimizing the quality of services in a Cloud-Fog computing system.

    This study proposed information centric IoT system in a Cloud-Fog computing. First, it analyzes utilization rate of every material. Based on the results, the manager uses resource allocation to further examine the resource utilization to select which was rather appropriate to present in the study. It increases the utilization of each Fog and cloud services to users with a new, better quality of service resource. Nevertheless, this study proposes a job classification mechanism. For example, different priorities of data make different sequences. The data classifies various priorities to make sure that it complies with Service Level Agreement (SLA) and avoids data preemption at the same time. The higher priority data processing time reduces by 42.28% comparing to former one without job classification system.

    摘要 I Abstract II 致謝 IV Contents V List of Figures VII List of Tables IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 3 1.3 Organization 5 Chapter 2 Background Knowledge 6 2.1 Cloud Computing 6 2.2 Fog computing 13 2.2.1 Cloud Computing vs Fog computing 15 2.2.2 Fog Computing vs Mobile Edge Computing 16 2.3 Internet of Things 18 2.3.1 Overview of Internet of Things 18 2.3.2 Middleware 21 2.3.3 IoT Feature – Date Type 23 2.3.4 IoT Feature – Data Update Rate 23 2.3.5 IoT Feature –Data Authority 24 2.3.6 IoT Feature – Data System Latency 25 2.4 Open Source Cloud Computing Platforms 26 2.4.1 CloudSim 26 Chapter 3 Information Centric IoT System Architecture 31 3.1 System Overview 31 3.2 IoT Layer 34 3.3 IoT Middleware Layer 34 3.4 Information Centric IoT System Manager Layer 42 3.5 Fog Layer 50 3.6 Cloud Layer 54 3.7 Scanning Cycle 58 Chapter 4 System Performance Analysis 59 4.1 System Implementation 59 4.2 System Implementation Architecture 62 4.3 System Design 64 4.3.1 CloudSim Datacenter Design 64 4.3.2 CloudSim System Design 66 4.4 Performance Analysis 68 Chapter 5 Conclusion and Future Work 70 5.1 Conclusion 70 5.2 Future Work 72 References 74

    [1] Y.W. Ma, J.L. Chen and Y.Y. Chang, "Cloud computing technology for the petroleum application, "Proceedings of the International Conference on Advanced Communication Technology, pp. 101-104, 2015.
    [2] Z. Yin, F. R. Yu, S. Bu and Z. Han, "Joint Cloud and Wireless Networks Operations in Mobile Cloud Computing Environments with Telecom Operator Cloud," IEEE Transactions on Wireless Communications, vol.14, no.7, pp. 4020-4033, 2015.
    [3] A. R. Khan, M. Othman, F. Xia and A. N. Khan, "Context-Aware Mobile Cloud Computing and Its Challenges," IEEE Cloud Computing, vol.2, no.3, pp. 42-49, 2015.
    [4] P. C. Hershey, S. Rao; C. B. Silio and A. Narayan, "System of Systems for Quality-of-Service Observation and Response in Cloud Computing Environments," IEEE Systems Journal, vol.9, no.1, pp. 212-222, 2015.
    [5] P. A. Dhuldhule, J. Lakshmi and S. K. Nandy, "High Performance Computing Cloud -- A Platform-as-a-Service Perspective," Proceedings of the International Conference on Cloud Computing and Big Data, pp. 21-28, 2015.
    [6] A. Aldhalaan, D. A. Menascé and "Near-Optimal Allocation of VMs from IaaS Providers by SaaS Providers," Proceedings of the International Conference on Cloud and Autonomic Computing, pp. 228-231, 2015.
    [7] C. Canali and R. Lancellotti, "Exploiting Classes of Virtual Machines for Scalable IaaS Cloud Management," Proceedings of the International Conference on Network Cloud Computing and Applications, pp. 15-22, 2015.
    [8] G. Justy Mirobi and L. Arockiam, "Service Level Agreement in Cloud Computing: An Overview," Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 753-758, 2015.
    [9] G. Fan, H. Yu and L. Chen, "A Formal Aspect-Oriented Method for Modeling and Analyzing Adaptive Resource Scheduling in Cloud Computing," IEEE Transactions on Network and Service Management, vol.13, no.2, pp. 281-294, 2016.
    [10] A. Babar and B. Ramsey, "Tutorial: Building Secure and Scalable Private Cloud Infrastructure with Open Stack, " Proceedings of the International Conference on International Enterprise Distributed Object Computing, pp. 166-166, 2015
    [11] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang and M. R. T. Lyu, " A Formal Aspect-Oriented Method for Modeling and Analyzing Adaptive Resource Scheduling in Cloud Computing," IEEE Transactions on Services Computing, vol.8, no.2, pp. 398-409, 2015
    [12] X. Qiu, H. Li, C. Wu, Z. Li and F. C. M. Lau, "Cost-Minimizing Dynamic Migration of Content Distribution Services into Hybrid Clouds," IEEE Transactions on Parallel and Distributed Systems, vol.26, no.12, pp. 3330-3345, 2015
    [13] S. Ningning, G. Chao, A. Xingshuo and Z. Qiang, "Fog Computing Dynamic Load Balancing Mechanism Based on Graph Repartitioning," China Communications, vol.13, no.3, pp. 156-164,2016
    [14] Cisco, "Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are," Cisco, pp. 1-6,2015
    [15] F. Bonomi, R. Milito, J. Zhu and S. Addep, "Fog Computing and Its Role in the Internet of Things," Cisco, pp. 13-15,2012
    [16] K. Intharawijitr, K. Iida, and H. Koga, "Analysis of Fog Model Considering Computing and Communication Latency in 5G Cellular Networks," Proceedings of the International Conference on Pervasive Computing and Communications Work in Progress, pp. 1-4,2016
    [17] I. Farris, R. Girau, L. Militano, M. Nitti, L. Atzori, A. Iera and G. Morabito, " Social Virtual Objects in the Edge Cloud," IEEE Cloud Computing, vol.2, no.6, pp. 20-28,2015
    [18] S. Sarkar and S. Misra, "Theoretical Modelling of Fog Computing: a Green Computing Paradigm to Support IoT Applications, " Proceedings of the International Symposium on IET Networks, pp. 23-29,2016
    [19] S. H. S. Newaz, A. F. Y. Mohammed, G. M. Lee and J. K. Choi, "Energy Efficient and Latency Aware TDM-PON for local customer internetworking," Proceedings of the International Symposium on Integrated Network Management, pp. 1184-1189,2015
    [20] P. P. Jayaraman, J. B. Gomes, H. L. Nguyen, Z. S. Abdallah, S. Krishnaswamy and A. Zaslavsky, "Scalable Energy-Efficient Distributed Data Analytics for Crowdsensing Applications in Mobile Environments," IEEE Transactions on Computational Social Systems, vol.2, no.3, pp. 109-123, 2015.
    [21] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, "Mobile Edge Computing A key technology towards 5G," ETSI, pp. 1-16, 2015.
    [22] H. Li; G. Shou, Y. Hu and Z. Guo, "Mobile Edge Computing: Progress and Challenges, " Proceedings of the International Conference on Mobile Cloud Computing, Services, and Engineering, pp. 83-84, 2016.
    [23] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. A. Ayyoub and E. Benkhelifa, “The Future of Mobile Cloud Computing: Integrating Cloudlets and Mobile Edge Computing,” Proceedings of the International Conference on Telecommunications, pp. 1-5, 2016.
    [24] A. Z. Tomsic, T. Crain and M. Shapiro, “Scaling Geo-replicated Databases to the MEC Environment,” Proceedings of the International Conference on Reliable Distributed Systems Workshop, pp. 74-79, 2015.
    [25] M. Nitti, L. Atzori and I. P. Cvijikj, “Friendship Selection in the Social Internet of Things: Challenges and Possible Strategies,” IEEE Internet of Things Journal, vol.2, no.3, pp. 240-247, 2015
    [26] M. A. Razzaque, M. M. Jevric, A. Palade and S. Clarke, “Middleware for Internet of Things: A Survey,” IEEE Internet of Things Journal, vol.3, no.1, pp. 70-95, 2016
    [27] M. Aazam and E. N. Huh, “Fog Computing: The Cloud-IoT/IoE Middleware Paradigm,” IEEE Potentials, vol.35, no.3, pp. 40-44, 2016
    [28] Seong Hoon Kim; Daeyoung Kim, “Enabling Multi-Tenancy via Middleware-Level Virtualization with Organization Management in the Cloud of Things,” IEEE Transactions on Services Computing, vol.8, no.6, pp. 971-984, 2015
    [29] R. N. Calheiros, R. Ranjan, A. Beloglazov and C. A. F. De R. R. Buyya, “CloudSim: a Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms,” Journal Software—Practice & Experience, vol. 41 no. 1, pp. 23-50, 2011.
    [30] P. Humane and J. N. Varshapriya, "Simulation of cloud infrastructure using CloudSim simulator: A practical approach for researchers," Proceedings of the International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp. 207-211, 2015.
    [31] O. Khedher and M. Jarraya, "Improved scheduling algorithm in VCL Cloud computing environment on CloudSim," Proceedings of the International Conference on High Performance Computing & Simulation, pp. 254-261, 2015.

    無法下載圖示 全文公開日期 2021/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE