簡易檢索 / 詳目顯示

研究生: 葉子豪
Zih-hao Ye
論文名稱: 微環形共振腔於生醫感測器之應用
Microring Resonator for Biosensor
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 王倫
Lon A.Wang
黃升龍
Sheng-Lung Huang
劉政光
Cheng-Kuang Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 環形共振腔多模干涉器矽線波導波導生醫感測器
外文關鍵詞: multi-mode interference
相關次數: 點閱:246下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

緣層上覆矽波導具有低成本、高效率與高品質的特性,其與互補式金屬氧化物半導體的標準製程相容,更使得絕緣層上覆矽波導已使用於光纖通訊系統高密度分波多功(Dense Wavelength Division Multiplexing, DWDM)的核心元件中。在此波導中,矽與埋藏氧化層之間的高折射率差,使得元件線寬能微縮至次微米等級,因此以次微米矽線波導架構設計之高積體化與寬Free Spectral Range (FSR)的環形共振腔,也被提出於光通訊多功元件的應用。近年來在生醫方面,環形共振腔可應用於血糖作光波導外部覆蓋層,血糖濃度改變造成共振波長位移時進行感測,環形共振腔具有成本低廉、體積小、感測範圍大、可偵測多種溶液,且在不需要試紙的情況下作量測,因此極有商品化潛力。
此篇論文使用多模干涉器(Multimode Interference, MMI)作為環形共振腔的耦合器設計,MMI分光比對於波長與極化的不敏感特性,這特性使環形共振腔在生醫感測方面有更大效率的應用。同時在微影製程方面,傳統I-line曝光機就能達到理想MMI的長寬比,此有別於需要小於0.3-μm最小線寬的E-Beam曝光機之方向耦合器。之後我們使用變壓器耦合式電漿反應離子蝕刻機(Transformer Coupled Plasma REI,TCP-RIE)來蝕刻次微米矽線波導,藉由改變蝕刻反應氣體流量,使得波導垂直度大於85度與其側壁粗糙度小於10-nm,經實驗量得其傳播損耗約為15-dB/cm。
具有50:50分光比之MMI耦合器的環形共振腔,在實際量測結果得到在1550-nm波段的消光比為12-dB、品質參數為5740、FSR為0.55-nm,當覆蓋5g/dL的葡萄糖溶液,可測得共振波長變化為0.12-nm,如考慮可調式雷射之解析度為1-pm,理論的偵測極限是5.72×10-5 RIU(Refractive Index Unit),同時其共振波長位移與血糖折射率變化的敏感度為161-nm/RIU。


Due to the advantages of silicon material on low cost, transparency in telecommunication wavelegnths, CMOS compatible processing, and the high index contrast for a small footprint, the silicon-on-insulator (SOI) platform is utilized to offer the potential of constructing and processing photonic integrated circuits on the massive electronics fabrication infrastructure. Ring resonator has been developed for its high density and wide free spectral range (FSR), thus utilized as the multiplexer in DWDM applications. In biosensing, the resonance wavelength shift induced by the refractive index change of sugar solution cladding could be detected by the ring resonator, which owns the properties of low cost, small foot print, wider sensing region, and test paper needless, thus with the potential for commercial applications.
In this thesis, the multimode interferometer (MMI), insensitive to the wavelength and polarization, was utilized as the coupling function in microring resonator for biosensing. In lithography process, I-line stepper could easily demonstrate the ideal critical dimension of 0.5 m. On the other hand, the directional coupler is requiring the E-Beam lithography to achieve the critical dimension of 0.3 m The vertical angle is above 85 degree, the sidewall roughness is less than 10 nm, and the propagation loss is characterized as 15 dB/cm.
The power splitting ratio of MMI was 50:50. The measured extinction ratio at 1550 nm wavelength and the quality factor were 12 dB and 5740, respectively. The FSR was 0.55 nm, and the phase shift was 0.12 nm while the microring resonator was cladded with 5g/dL sugar solution. If the resolution of tunable laser source is 1-pm, the detection limit could be shown as 5.72×10-5 RIU(Refractive Index Unit). The sensitivity of wavelength shift versus the glucose effective index change was 161 nm/RIU.

第一章 緒論 1 1.1 簡介 1 1.2 研究動機 1 1.3 文獻回顧 2 1.4 論文架構 4 第二章 次微米矽線波導介紹 5 2.1 矽線波導介紹 5 2.2 波導結構 6 2.3 單多模條件 7 2.4 傳播損耗 8 2.5 雙折射效應 9 2.6 有限時域差分法 11 第三章 環形共振腔 14 3.1 環型共振腔理論分析 14 3.2 葡萄糖濃度與折射率的關係 20 3.3 關鍵耦合 23 3.4 方向耦合器 25 3.5 多模干涉器模擬與設計 30 3.6 環形共振腔設計 36 3.7 模態轉換器 40 第四章 製程與量測介紹 47 4.1 SOI晶圓的製程方式介紹 47 4.2 波導的製造流程簡介 50 4.3 微影技術 55 4.3.1 光學微影 59 4.3.2 電子束微影 60 4.4 蝕刻技術 61 4.4.1 濕式蝕刻 62 4.4.2 乾式蝕刻 63 4.5 薄膜技術 71 4.5.1 化學氣相沈積 71 4.6 微環形共振腔的量測結果 74 第五章 結論 79 第六章 參考文獻 80

[1]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, " Microring resonator channel dropping filters, " J. Lightwave Technol. 15,998-1005 (1997).
[2]T.A. Ibrahim; W. Cao; Y. Kim; J. Li; J. Goldhar; P.-T. Ho; C.H. Lee; , "All-optical switching in a laterally coupled microring resonator by carrier injection," Photonics Technology Letters, IEEE , vol.15, no.1,pp.36-38, Jan. 2003
[3] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, "Micrometer-scale silicon electro-optic modulator, " Nature 435, 325-327 (2005).
[4]H. F. Taylor, "Enhanced electroopic modulation efficiency utilizing slow-wave optical propagation", IEEE J. Lightwave Tech. 17, 1875 (1999)
[5]D.-X. Xu; S. Janz; P. Cheben; , "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering," Photonics Technology Letters, IEEE , vol.18, no.2,pp.343-345, Jan. 15, 2006
[6]Gun-Duk Kim, Geun-Sik Son, Hak-Soon Lee, Ki-Do Kim, Sang-Shin Lee, "Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers", Optics Communications, Volume 281, Issue 18, 15 September 2008, Pages 4644-4647, ISSN 0030-4018,
[7]T. Aalto, "Microphotonics silicon waveguide components," (ISBN 951-38-6422-7) VTT, Finland, pp.27-28, 2004.
[8]P. Dumon; W. Bogaerts; V. Wiaux; J. Wouters; S. Beckx; J. Van Campenhout; D. Taillaert; B. Luyssaert; P. Bienstman; D. Van Thourhout; R. Baets; , "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," Photonics Technology Letters, IEEE , vol.16, no.5, pp.1328-1330, May 2004
[9] 劉凱文, "矽線波導在設計與製程方面的研究",國立台灣科技大學電子工程學系碩士論文,民國九十八年七月
[10]Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966.
[11]A. Yariv and P. Yeh, Photonics, "Optical Electronics in Modern Communications-6th edition", Oxford University Press, New York, 2007, p.184
[12]D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Dele, S. Janz, P. Cheben, J. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Opt. Express 15, 3149-3155 ,2007.
[13]Hui Su, Xu Guang Huang, "Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions", Sensors and Actuators B: Chemical, Volume 126, Issue 2, 1 October 2007,Pages 579-582, ISSN 0925-4005.
[14]Densmore, A.; Xu, D.-X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.;Delage, A.; Lamontagne, B.; Schmid, J.H.; Post, E.; , "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor," Photonics Technology Letters, IEEE , vol.18, no.23, pp.2520-2522, Dec.1, 2006
[15] Maine, S.; Marris-Morini, D.; Vivien, L.; Cassan, E.; Pascal, D.; Laval, S.; Orobtchouk, R.; Han, B.; Benyattou, T.; El Melhaoui, L.; Fedeli, J.-M., "High Q-Factor Microrings Using Slightly Etched Rib Waveguides,"Lightwave Technology, Journal of , vol.27, no.10,pp.1387-1391, May15, 2009
[16]Qingzhong Huang, Yude Yu, Jinzhong Yu, "Experimental investigation on submicron rib waveguide microring/racetrack resonators in silicon-on-insulator, Optics Communications", Volume 282, Issue 1, 1 January 2009, Pages 22-26, ISSN 0030-4018, 2008.09.052.
[17] William R. Headley, Graham T. Reed, Simon Howe, Ansheng Liu, and Mario Paniccia,"Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator", Appl. Phys. Lett. 85, 5523 ,2004
[18] Katsunari Okamoto, " Fundamentals of Optical Waveguides – Second Edition", Academic Press, Elsevier Inc. Amster-dam, Boston, Heidelberg, London 2006
[19]D. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Dele, S.Janz, P. Cheben, J. Schmid, and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Opt. Express 15, 3149-3155 (2007).
[20]V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Optics Letters, vol. 28, pp. 1302-1304, 2003.
[21]林奕良,” 矽線波導耦光效率之研究” , 國立台灣科技大學電子工程學系碩士論文,民國九十九年七月
[22]J. D. Plummer, M. D. Deal, and P. B. Griffin, " Silicon VLSI Technology Fundamentals", Practice and Modeling (Prentice Hall, Upper Saddle River, 2000).
[23]D. V. Thourhout, W. Bogaerts, P. Dunon, " Optical Interconnects-The Silicon Approach," Springer, Berlin, pp.205-237, 2007.

無法下載圖示 全文公開日期 2016/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE