簡易檢索 / 詳目顯示

研究生: 吳育璿
Yu-Hsuan Wu
論文名稱: 一種製備核殼及中空銀顆粒的方法
Method for preparing core-shell and hollow silver particles
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 噴霧熱解中空核殼形貌
外文關鍵詞: spray pyrolysis, silver, hollow, core-shell, morphology
相關次數: 點閱:308下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來中空材料因其廣泛的應用於各個領域中,所以受到越來越多的關注,常用於催化劑、保護劑及藥物載體等。而銀的應用範圍也很廣,常用於催化劑、導體、電子元件及創傷敷料。前人的研究中,以有許多製備銀顆粒的方法,譬如沉澱法和水熱法,而中空銀顆粒也有許多的製備方法,譬如溶膠凝膠法及科肯達效應,但未有以噴霧熱解法做中空銀顆粒的研究,而噴霧熱解法是較為低成本且可量產的製程。本研究以硝酸銀和醋酸銀為前驅物,並添加甘胺酸及澱粉,利用噴霧熱解法製備,使銀顆粒產生中空形貌,以熱重/熱差分析儀量測前驅物及添加物之熱裂解溫度,並以掃描式電子顯微鏡及穿透式電子顯微鏡觀察製備出的中空銀顆粒的形貌與大小,用X光繞射儀與選區電子繞射鑑定其結晶結構,本研究結果顯示前驅物添加甘胺酸及澱粉可得到中空或核殼狀的銀顆粒。透過不同的添加物以及添加物濃度的控制,可控制銀顆粒的孔隙度。最後本研究將中空銀顆粒作紫外線-可見光/近紅外線分析儀以及比表面積量測,發現中空銀顆粒相較實心顆粒對於可見光的吸收較少,且比表面積較高。


Recently hollow materials have received much attention due to their wide applications in catalysts, protective agent and drug carriers Silver also has wide applications in catalysts, conductors, electronic components and wound dressings. The method of precipitation and hydrothermal synthesis and the techniques of sol-gel and Kirkendall effect method have been used to fabricate silver and hollow silver particles. However, there is no research about producing hollow silver particles by spray pyrolysis(SP) process. SP process has advantages of low cost and feasibility for mass production. Here we prepared silver particles from the precursors silver nitrate and silver acetate, and added in glycine and starch using the SP process. The decomposed temperature of precursor was measured using thermogravimetric/differential thermal analysis (TG-DTA). Also, the morphology and size of the synthesized silver particles were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Respectively, X-ray diffractometer (XRD) and selected area electron diffraction (SAED) were used to investigate the crystalline structure. The results show that the precursors add to glycine and starch could receive the hollow or core-shell silver particles. We control porosity of silver particles by different additives and concentration of additives. Finally, we performed UV-Vis/NIR spectrometers and BET, and the result suggest that hollow silver particles absorb less visible light and higher specific surface area than the that of solid silver particles.

英文摘要……………………………………………………………….ⅰ 中文摘要.................................................................................................ⅱ 致謝…………………………………………………………………….ⅲ 目錄…………………………………………………………………….ⅳ 圖目錄………………………………………………………………….ⅴ 表目錄………………………………………………………………….ⅵ 第1章、緒論……………………………………………………………..1 第2章、文獻回顧………………………………………………………..3 2.1 中空材料的應用…………………………………………………...3 2.2 中空材料的製備方法……………………………………………...3 2.2.1 微乳化法……………………………………………………4 2.2.2 溶膠-凝膠法…………..……………………………………5 2.2.3 層接層法……………………………………………………6 2.2.4 柯肯達效應……………………….………………………...7 2.3 銀之性質…………………………………………………………...7 2.3.1晶體結構……………………………………………………..7 2.3.2 物理性質……………………………………………………7 2.4 銀之製備方法…………………………………………………….11 2.4.1 水熱法……………………………………………………..11 2.4.2 沉澱法…………………..…………………………………12 2.4.3 化學還原法………………………………………………..12 2.4.4 溶膠-凝膠法…………..…………………………………..13 2.5 噴霧熱解法……………………………………………………….15 2.5.1 噴霧熱解法簡介…………………………………………..15 2.5.2 噴霧熱解法製程…………………………………………..16 2.5.2.1 先驅物溶液…………………………………………15 2.5.2.2 先驅物霧化…………………………………………17 2.5.2.3 溶劑之蒸發…………………………………………18 2.5.2.4 乾燥…………………………………………………19 2.5.3 靜電沉積技術……………………………………………..20 2.5.4 粒徑控制…………………………………………………..21 2.5.5 形貌控制…………………………………………………..25 第3章、實驗目的與方法………………………………………………33 3.1 實驗設計與目的………………………………………………….33 3.2 試片之製備……………………………………………………….35 3.3 粉體及試片特性量測…………………………………………….37 3.3.1 熱重/熱差分析儀…………………………………………37 3.3.2 X-ray繞射分析……………………………………………38 3.3.3 場發射掃描式電子顯微鏡表面形貌分析及粒徑量測…..39 3.3.4 穿透式電子顯微鏡內部形貌分析………………………..39 3.3.5 選區電子繞射……………………………………………..40 3.3.6 比表面積量測……………………………………………..41 3.3.7 紫外線-可見光/近紅外光分析儀………………………..41 第4章、結果與討論……………………………………………………42 4.1 前驅物之特性分析……………………………………………….42 4.1.1 前驅物之熱重分析………………………………………..42 4.1.2 前驅物之溶解度…………………………………………..46 4.2 噴霧熱解之銀粉性質分析…………………………………….…48 4.2.1 前驅物製備銀粉之XRD晶相分析………………………...48 4.2.2 前驅物製備銀粉之FESEM表面形貌分析………………...51 4.2.3 前驅物製備銀粉之粒徑分布……………………………..55 4.2.4 前驅物製備銀粉之TEM顆粒形貌分析…………………..61 4.3 前驅物製備銀粉之SAED選區繞射………………………………68 4.4 前驅物製備銀粉之紫外光-可見光/近紅外光分析儀………….74 4.5 前驅物製備銀粉之比表面積量測……………………………….75 4.6 前驅物製備銀粉之成行機制…………………………………….77 第5章、結論……………………………………………………………79 第6章、未來工作………………………………………………………80 第7章、參考文獻....................................................................................81

1. Wiley, B., Y. Sun, and Y. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Accounts of Chemical Research, 2007. 40(10): p. 1067-1076.
2. Wang, S., D. Pang, and D.D.L. Chung, Hygrothermal Stability of Electrical Contacts Made from Silver and Graphite Electrically Conductive Pastes. Journal of Electronic Materials, 2007. 36(1): p. 65-74.
3. C.-A. Lu, L., Pang, Lin, Hong-Ching, Wang, Sea-Fue, Characterization of the low-curing-temperature silver paste with silver 2-ethylhexanoate addition. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2007. 46(1): p. 251-255.
4. Liau, S.Y., et al., Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in Applied Microbiology, 1997. 25(4): p. 279-283.
5. Zahedi, P., et al., A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies. 21(2): p. 77-95.
6. Rashid, M.H. and T.K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites. The Journal of Physical Chemistry C, 2007. 111(45): p. 16750-16760.
7. http://silverprice.orgsilver-price-history.html.
8. Jang, J. and H. Ha, Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers. Langmuir, 2002. 18(14): p. 5613-5618.
9. Ren, T.-Z., Z.-Y. Yuan, and B.-L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chemical Physics Letters, 2003. 374(1??): p. 170-175.
10. Wong, M.S., et al., Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides. Nano Letters, 2002. 2(6): p. 583-587.
11. Park, S.H., D. Qin, and Y. Xia, Crystallization of Mesoscale Particles over Large Areas. Advanced Materials, 1998. 10(13): p. 1028-1032.
12. Iler, R.K., Multilayers of colloidal particles. Journal of Colloid and Interface Science, 1966. 21(6): p. 569-594.
13. Park, M.-K., et al., Cross-Linked, Luminescent Spherical Colloidal and Hollow-Shell Particles. Langmuir, 2001. 17(24): p. 7670-7674.
14. Mandal, T.K., M.S. Fleming, and D.R. Walt, Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates. Chemistry of Materials, 2000. 12(11): p. 3481-3487.
15. Yin, Y., et al., Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004. 304(5671): p. 711-714.
16. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a?model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): p. 177-182.
17. http://colloidalsilversecrets.blogspot.tw/2011/03/experts-its-silver-ion-that-gives.html.
18. Kim, J., et al., Metal nanoparticle synthesis using supercritical alcohol. Materials Letters, 2009. 63(21): p. 1880-1882.
19. Manno, D., et al., Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. Journal of Non-Crystalline Solids, 2008. 354(52??4): p. 5515-5520.
20. M.R. Y. D. Sosa, M.E.T.n., H. Saade, and R. G. L’opez, High-yield synthesis of silver nanoparticles by precipitation in a high-aqueous phase content reverse microemulsion. Journal of Nanomaterials 2010, 2010.
21. P璽rvulescu, V.I., et al., Sol?el-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis. 272(1): p. 92-100.
22. Pluym, T.C., et al., Solid silver particle production by spray pyrolysis. Journal of Aerosol Science, 1993. 24(3): p. 383-392.
23. Akkopru, B. and C. Durucan, Preparation and microstructure of sol-gel derived silver-doped silica. Journal of Sol-Gel Science and Technology, 2007. 43(2): p. 227-236.
24. Blum, J.B. and S.R. Gurkovich, Sol-gel-derived PbTiO3. Journal of Materials Science, 1985. 20(12): p. 4479-4483.
25. Hsu, S.L.-C. and R.-T. Wu, Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 2007. 61(17): p. 3719-3722.
26. Lee, C.-L., K.-C. Chang, and C.-M. Syu, Silver nanoplates as inkjet ink particles for metallization at a low baking temperature of 100 簞C. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 381(1??): p. 85-91.
27. Chang, J.-S., Y.-P. Lee, and R.-C. Wang, Optimization of Nanosized Silver Particle Synthesis via Experimental Design. Industrial & Engineering Chemistry Research, 2007. 46(17): p. 5591-5599.
28. Kao, Z.-K., Y.-H. Hung, and Y.-C. Liao, Formation of conductive silver films via inkjet reaction system. Journal of Materials Chemistry. 21(46): p. 18799-18803.
29. Chen, G.-S., et al., Synthesis, Characterization, and Antibacterial Activity of Silver-Doped Silica Nanocomposite Particles. Journal of Nanoscience and Nanotechnology. 11(1): p. 90-97.
30. Raffi, M., J.I. Akhter, and M.M. Hasan, Effect of annealing temperature on Ag nano-composite synthesized by sol?el. Materials Chemistry and Physics, 2006. 99(2??): p. 405-409.
31. H.-J. Jeon, S.-C.Y., S.-G. Oh, Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials, 2003. 24(27): p. 4921-4928.
32. Kawashita, M., et al., Antibacterial silver-containing silica glass prepared by sol?el method. Biomaterials, 2000. 21(4): p. 393-398.
33. Yang, S.-Y. and S.-G. Kim, Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technology, 2004. 146(3): p. 185-192.
34. Pingali, K.C., D.A. Rockstraw, and S. Deng, Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Science and Technology, 2005. 39(10): p. 1010-1014.
35. Li, R., et al., Study of fine silver powder from AgOH slurry by hydrothermal techniques. Journal of Materials Processing Technology, 2003. 137(1??): p. 55-59.
36. Huang, C.-M., et al., CTAB-assisted hydrothermal synthesis of silver vanadates and their photocatalytic characterization. Chemical Engineering Science. 65(1): p. 148-152.
37. Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
38. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of Materials Research, 1995. 10(07): p. 1661-1673.
39. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999. 59(3): p. 185-198.
40. Na?cu, C., et al., Spray pyrolysis deposition of CuS thin films. Materials Letters, 1997. 32(2??): p. 73-77.
41. Ne禳i, S. and J. Vodnik, Kinetics of droplet evaporation. Chemical Engineering Science, 1991. 46(2): p. 527-537.
42. Scherer, G.W., Crack-tip stress in gels. Journal of Non-Crystalline Solids, 1992. 144(0): p. 210-216.
43. Kato, H., et al., Electrical conductivity of Al-doped La1?SrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC. Solid State Ionics, 2003. 159(3??): p. 217-222.
44. Kraemer, H.F. and H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields. Industrial & Engineering Chemistry, 1955. 47(12): p. 2426-2434.
45. Liu, S. and P.K. Dasgupta, Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection. Analytical Chemistry, 1996. 68(20): p. 3638-3644.
46. Jung, D.S., H.Y. Koo, and Y.C. Kang, Electrical and morphological properties of conducting layers formed from the silver?lass composite conducting powders prepared by spray pyrolysis. Journal of Colloid and Interface Science. 343(1): p. 1-6.
47. Shi, X., et al., Synthesis of nano Ag powder by template and spray pyrolysis technology. Materials Chemistry and Physics, 2008. 112(3): p. 1110-1113.
48. Lee, K., S. Rah, and S.-G. Kim, Formation of monodisperse silver nanoparticles in poly(vinylpyrrollidone) matrix using spray pyrolysis. Journal of Sol-Gel Science and Technology, 2008. 45(2): p. 187-193.
49. Park, E., S. Rah, and S.-G. Kim, Effect of gas environment on properties of particles prepared by spray pyrolysis of metal nitrates. Korean Journal of Chemical Engineering, 2008. 25(4): p. 885-891.
50. Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499.
51. Okuyama, K., Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science, 1991. 22, Supplement 1(0): p. S7-S10.
52. Lu, H., Fabrication and characterization of porous silver powder prepared by spray drying and calcining technology. Powder Technology. 203(2): p. 176-179.
53. Zheng, R., X. Guo, and H. Fu, One-step, template-free route to silver porous hollow spheres and their optical property. Applied Surface Science. 257(6): p. 2367-2370.
54. Ahn, K., et al., In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. Journal of Nanoparticle Research. 12(7): p. 2457-2465.
55. Dae Soo Jung, H.Y.K., Yun Chan Kang, Composite conducting powders with core–shell structure as the new concept of electrode material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010: p. 69-73.
56. Morales, J., et al., Synthesis, Characterization, and Electrochemical Properties of Nanocrystalline Silver Thin Films Obtained by Spray Pyrolysis. Journal of The Electrochemical Society, 2004. 151(1): p. A151-A157.
57. Judd, M.D., B.A. Plunkett, and M.I. Pope, The thermal decomposition of calcium, sodium, silver and copper(II) acetates. Journal of thermal analysis, 1974. 6(5): p. 555-563.
58. Park, J.-H., et al., Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates. Materials Research Bulletin, 2005. 40(2): p. 271-280.
59. Zhang, D., et al., Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer–Surfactant Solutions. Advanced Materials, 2002. 14(20): p. 1499-1502.
60. Chen, Z., et al., Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating. Advanced Materials, 2004. 16(5): p. 417-422.
61. Wang, L. and D. Chen, A facile method for the preparation of hollow silver spheres. Materials Letters, 2007. 61(10): p. 2113-2116.
62. Wang, A., et al., Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate. Applied Surface Science. 256(8): p. 2611-2615.
63. Ben Moshe, A. and G. Markovich, Synthesis of Single Crystal Hollow Silver Nanoparticles in a Fast Reaction-Diffusion Process. Chemistry of Materials. 23(5): p. 1239-1245.

QR CODE