簡易檢索 / 詳目顯示

研究生: 趙培霖
Pei-Lin Chao
論文名稱: 三維動態骨細胞培養並應用於骨組織工程
Three-dimensional dynamic culture of osteogenic cells for tissue engineering
指導教授: 何明樺
Ming-Hua Ho
口試委員: 王潔
Jane Wang
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 三維支架動態系統骨細胞
外文關鍵詞: three-dimensional scaffolds, dynamic system, osteogenic cells
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們設計和製造了具有流動相的生物反應器,並以此發展三維動態培養系統。藉由冷凍凝膠法,我們製備富含均勻孔洞及高孔隙率的幾丁聚醣支架作為生物反應器中的固定相,接著進行骨母細胞培養。細胞實驗的結果指出,幾丁聚醣支架具有良好的生物相容性。比較二維與三維培養系統,三維系統提供細胞更多的貼附面積。比較靜態與動態培養系統,若流速為2mL/day時,動態培養環境中的細胞呈現最好的細胞活性,然而動態系統中培養液的流量過高時,則會產生剪切應力導致細胞活性降低,流量過低則是無法表現流動特性。
第二部分的研究中,我們以柚皮苷(Naringin)和地塞米松(Dexamethasone)這兩種具有骨誘導性的藥物為標的,測試藥物在靜態與動態培養系統中對細胞影響的差異性。由實驗結果發現,動態系統促進了柚皮苷和地塞米松對細胞的作用,即在相同的藥物濃度下,細胞活性高於靜態系統、細胞骨分化較靜態系統早、細胞成骨時的鈣含量也遠高於靜態系統。在細胞毒性方面,相較於靜態系統,在動態系統中藥物產生毒性的濃度較低。此結果也表示,動態系統所培養的細胞對於藥物的刺激較為敏感。
比起傳統靜態二維培養,本研究開發的三維動態系統能給予骨母細胞更類似體內環境的培養條件,在組織工程方面,更有助於細胞的增生。當應用於藥物測試時,能使藥物對細胞的影響更趨近於人體內的真實情況。


In this research, the three dimensional dynamic culture processes were developed, and the flowing bioreactor was designed and fabricated. Chitosan scaffold in bioreactor was prepared by the freezing-gelation process. The scaffolds showed uniform pores and high porosity. The culture of osteogenic cells on scaffolds was conducted in the static and in the dynamic culture process with controlled flow rates of medium. The result supported that with a suitable range of flow rate, the dynamic system offer the better culture environment than the static cultivation, which revealed by the high cellular viability. However, when the flow rate was higher than 2mL/day, it will generate the shear stress and decrease the cell viability. Oppositely, the flow rate lower than 2ml/day was not effective on
In the second part of this research, two different drugs, Naringin and Dexamethasone, were added into our three-dimensional bioreactor, respectively. From the results, this dynamic system promoted the effect of Naringin and Dexamethasone to cells. In the same condition, the results of cell viability, osteogenic differentiation, and mineralization will be promoted in dynamic system. The results of cytotoxicity also indicate that the cells cultured by dynamic system are more sensitive to drug release.
Compared with two dimensional culture, the three dimensional dynamic system provide the human-like environment for osteogenic cells.

目錄 摘要 V Abstract VI 圖目錄 X 表目錄 XIII 專有名詞及縮寫 XIV 第一章 緒論 1 第二章 文獻回顧 2 2.1 細胞培養技術 2 2.1.1 細胞三維培養技術與靜態培養系統 2 2.2 細胞動態培養系統 4 2.2.1 批次動態培養系統 4 2.2.2 循環動態培養系統 5 2.2.3 動態系統對骨細胞的影響 7 2.3 藥物於細胞培養中的表現 9 2.3.1 不同系統之藥物表現 9 2.3.2 骨骼相關藥物表現 9 2.3.3 藥物添加於動態系統對於骨細胞影響 13 2.4 骨母細胞分化標記 15 第三章 實驗材料與方法 17 3.1 實驗藥品 17 3.2 實驗儀器 19 3.3 實驗步驟 21 3.3.1 支架的製備 21 3.3.2 動態系統的建立 21 3.4 體外細胞培養 22 3.4.1 實驗操作 22 3.4.2 細胞來源 22 3.4.3 細胞靜態培養 23 3.4.4 細胞播種 23 3.4.5 細胞動態實驗 24 3.4.6 細胞冷凍保存 24 3.4.7 細胞解凍及培養 25 3.4.8 細胞計數 25 3.4.9 粒線體活性測試 26 3.4.10 鹼性磷酸酶測試 28 3.4.11 蛋白質濃度測定 29 3.4.12 電子顯微鏡觀察前細胞樣本處理方式 31 3.4.13 柚皮苷添加 32 3.4.14 地塞米松添加 33 第四章 實驗結果與討論 34 4.1 二維與三維靜態培養的差異 34 4.2 細胞於靜態系統與不同流速之動態系統的差異 37 4.2.1 細胞活性表現 37 4.2.2 細胞型態觀察 40 4.3 柚皮苷於動態與靜態培養系統的差異 44 4.3.1 細胞活性表現 44 4.3.2 細胞型態觀察 46 4.3.3 細胞分化表現 48 4.3.4 細胞成骨表現 51 4.3.5 柚皮苷濃度對於靜態與動態系統之細胞毒性影響 56 4.4 地塞米松於不同培養系統的差異 58 4.4.1 細胞活性表現 58 4.4.2 細胞型態觀察 60 4.4.3 細胞分化表現 62 4.4.4 細胞成骨表現 65 4.4.5 地塞米松濃度對於不同系統之細胞毒性影響 69 第五章 結論 72 參考文獻 73 Appendix 82

1. Yeatts, A.B. and Fisher, J.P., Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone, 2011. 48(2): p. 171-181.
2. Galon, J., Fridman, W.H., and Pages, F., The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res, 2007. 67(5): p. 1883-1886.
3. Heams, T., Selection within organisms in the nineteenth century: Wilhelm Roux's complex legacy. Prog Biophys Mol Biol, 2012. 110(1): p. 24-33.
4. Harrison, R.G., Embryonic transplantation and development of the nervous system. The Anatomical Record, 1908. 2(9): p. 385-410.
5. Carrel, A. and Ingebrigtsen, R., The production of antibodies by tissues living outside of the organism. Journal of Experimental Medicine, 1912. 15(3): p. 287-291.
6. Baker, B.M. and Chen, C.S., Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci, 2012. 125(13): p. 3015-3024.
7. C. Lucas-Clerc, C.M., J.P. Campion, B. Launois and M. Nicol, Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Molecular and Cellular Endocrinology, 1993. 94(1): p. 9-20.
8. Liu, X., Weaver, E.M., and Hummon, A.B., Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Analytical chemistry, 2013. 85(13): p. 6295-6302.
9. Benien, P. and Swami, A., 3D tumor models: history, advances and future perspectives. Future Oncology, 2014. 10(7): p. 1311-1327.
10. Kwapiszewska, K., Michalczuk, A., Rybka, M., Kwapiszewski, R., and Brzózka, Z., A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab on a Chip, 2014. 14(12): p. 2096-2104.
11. Matsusaki, M., Case, C.P., and Akashi, M., Three-dimensional cell culture technique and pathophysiology. Advanced drug delivery reviews, 2014. 74(5): p. 95-103.
12. Coward, S.M., Selden, C., Mantalaris, A., and Hodgson, H.J., Proliferation rates of HepG2 cells encapsulated in alginate are increased in a microgravity environment compared with static cultures. Artificial organs, 2005. 29(2): p. 152-158.
13. Gregory N. Bancroft, Vassilios I. Sikavitsas, Juliette van den Dolder, Tiffany L. Sheffield, Catherine G. Ambrose, John A. Jansen, and Mikos, A.G., Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. PNAS, 2002. 99(20): p. 12600-12605.
14. Liu, H., Lin, J., and Roy, K., Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials, 2006. 27(36): p. 5978-5989.
15. Vassilios I. Sikavitsas, G.N.B., Antonios G. Mikos, Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Journal of Biomedical Materials Research, 2002. 62(1): p. 136-148.
16. Gregory N. Bancroft , V.I.S., and Antonios G. Mikos, Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications. Tissue Eng, 2003. 9(3): p. 549-563.
17. Di Carlo, D., Wu, L.Y., and Lee, L.P., Dynamic single cell culture array. Lab Chip, 2006. 6(11): p. 1445-1449.
18. Chung, B.G., Flanagan, L.A., Rhee, S.W., Schwartz, P.H., Lee, A.P., Monuki, E.S., and Jeon, N.L., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip, 2005. 5(4): p. 401-406.
19. Schumacher, K., Khong, Y.M., Chang, S., Ni, J., Sun, W., and Yu, H., Perfusion culture improves the maintenance of cultured liver tissue slices. Tissue Eng, 2007. 13(1): p. 197-205.
20. Lee, P.J., Hung, P.J., Rao, V.M., and Lee, L.P., Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng, 2006. 94(1): p. 5-14.
21. Bartholomew J. Kane, M.J.Z., Martin L. Yarmush, and Mehmet Toner,, Liver-Specific Functional Studies in a Microfluidic Array of Primary Mammalian Hepatocytes. Analytical Chemistry, 2006. 78(13): p. 4291-4298.
22. M. Shin, K.M., O. Ishii, H. Terai, M. Kaazempur-Mofrad, and J. Borenstein, M.D.a.J.P.V., Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane). Biomedical Microdevices, 2004. 6(4): p. 269-278.
23. Kim, L., Vahey, M.D., Lee, H.Y., and Voldman, J., Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip, 2006. 6(3): p. 394-406.
24. Toh, Y.C., Zhang, C., Zhang, J., Khong, Y.M., Chang, S., Samper, V.D., van Noort, D., Hutmacher, D.W., and Yu, H., A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip, 2007. 7(3): p. 302-309.
25. Park, T.G., Perfusion culture of hepatocytes within galactose-derivatized biodegradable poly(lactide-co-glycolide) scaffolds prepared by gas foaming of effervescent salts. Journal of Biomedical Materials Research, 2001. 59(1): p. 127-135.
26. Freyra, A.M., Yang, Y., Chajra, H., Rousseau,C.F., Ronziere,M.F., Herbage,D., and A.J. El Haj, Optimization of Dynamic Culture Conditions: Effects on Biosynthetic Activities of Chondrocytes Grown in Collagen Sponges. tissue Eng, 2005. 11(5): p. 674-684.
27. Rath, S.N., Strobel, L.A., Arkudas, A., Beier, J.P., Maier, A.K., Greil, P., Horch, R.E., and Kneser, U., Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med, 2012. 16(10): p. 2350-2361.
28. Hung, P.J., Lee, P.J., Sabounchi, P., Aghdam, N., Lin, R., and Lee, L.P., A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip, 2005. 5(1): p. 44-48.
29. Frangos, J.A, Hillsley, M.V., Review: Bone Tissue Engineering: The Role of Interstitial Fluid Flow. Biotechnology and Bioengineernign, 1993. 43(7): p. 573-581.
30. Leclerc, E., David, B., Griscom, L., Lepioufle, B., Fujii, T., Layrolle, P., and Legallaisa, C., Study of osteoblastic cells in a microfluidic environment. Biomaterials, 2006. 27(4): p. 586-595.
31. Manuela E. Gomes, V.I.S., Esfandiar Behravesh,Rui L. Reis,Antonios G. Mikos, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research, 2003. 67(1): p. 87-95.
32. Wei Gu, X.Z., Nobuyuki Futai, Brenda S. Cho, and Shuichi Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS, 2004. 101(45): p. 15861-15866.
33. Brunette, D.M., Chehroudi, B., The Effects of the Surface Topography of Micromachined Titanium Substrata on Cell Behavior in Vitro and in Vivo. J Biomech Eng, 1999. 121(1): p. 49-57.
34. Akira Horikawa , K.O., Kozo Sato and Minoru Sato, Morphological Changes in Osteoblastic Cells (MC3T3-E1) due to Fluid Shear Stress : Cellular Damage by Prolonged Application of Fluid Shear Stress. The Tohoku Journal of Experimental Medicine, 2000. 191(3): p. 127-137.
35. Hillsley, M.V , Frangos, J.A., Alkaline Phosphatase in Osteoblasts is Down-Regulated by Pulsatile Fluid Flow. Calcified Tissue International, 1996. 60(1): p. 48-53.
36. Toh, Y.C., Lim, T.C., Tai, D., Xiao, G., van Noort, D., and Yu, H., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip, 2009. 9(14): p. 2026-2035.
37. Huang, H., Oizumi, S., Kojima, N., Niino, T., and Sakai, Y., Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials, 2007. 28(26): p. 3815-3823.
38. Sugiura, S., Edahiro, J., Kikuchi, K., Sumaru, K., and Kanamori, T., Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol Bioeng, 2008. 100(6): p. 1156-1165.
39. Miki, T., Ring, A., and Gerlach, J., Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods, 2011. 17(5): p. 557-568.
40. Wu, M.H., Huang, S.B., and Lee, G.B., Microfluidic cell culture systems for drug research. Lab Chip, 2010. 10(8): p. 939-956.
41. Jeong, J.-C., Lee, B.-T., Yoon, C.-H., Kim, H.-M., and Kim, C.-H., Effects of Drynariae rhizoma on the proliferation of human bone cells and the immunomodulatory activity. Pharmacological research, 2005. 51(2): p. 125-136.
42. Wong, R.W., Rabie, B., Bendeus, M., and Hägg, U., The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chinese medicine, 2007. 2(1): p. 13.
43. Chen, L.l., Lei, L.h., Ding, P.h., Tang, Q., and Wu, Y.m., Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Archives of oral biology, 2011. 56(12): p. 1655-1662.
44. Wu, J.B., Fong, Y.C., Tsai, H.Y., Chen, Y.F., Tsuzuki, M., and Tang, C.H., Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. European journal of pharmacology, 2008. 588(2): p. 333-341.
45. Habauzit, V., Sacco, S.M., Gil-Izquierdo, A., Trzeciakiewicz, A., Morand, C., Barron, D., Pinaud, S., Offord, E., and Horcajada, M.-N., Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011. 49(5): p. 1108-1116.
46. Wong, R.W.K. and Rabie, A.B.M., Bone induction using hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Hong Kong Dental Journal, 2007. 4(1): p. 15-21.
47. Wong, R. and Rabie, A., Effect of naringin on bone cells. Journal of Orthopaedic Research, 2006. 24(11): p. 2045-2050.
48. Wang, E.A., Rosen, V., Cordes, P., Hewick, R.M., Kriz, M.J., Luxenberg, D.P., Sibley, B.S., and Wozney, J.M., Purification and characterization of other distinct bone-inducing factors. Proceedings of the National Academy of Sciences, 1988. 85(24): p. 9484-9488.
49. Riley, E.H., Lane, J.M., Urist, M.R., Lyons, K.M., and Lieberman, J.R., Bone morphogenetic protein-2: biology and applications. Clinical Orthopaedics and Related Research®, 1996. 324(1): p. 39-46.
50. O'Neill, T., Grafting of acrylic acid onto radiation‐peroxidized polypropylene film in the presence of ferrous ion. Journal of Polymer Science Part A: Polymer Chemistry, 1972. 10(2): p. 569-580.
51. Wong, R. and Rabie, A., Effect of Bio-Oss® Collagen and Collagen matrix on bone formation. The open biomedical engineering journal, 2010. 4(2): p. 71-76.
52. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., and Suda, T., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology, 1994. 127(6): p. 1755-1766.
53. Ang, E.S., Yang, X., Chen, H., Liu, Q., Zheng, M.H., and Xu, J., Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-kappaB and ERK activation. FEBS Lett, 2011. 585(17): p. 2755-2762.
54. Li, N., Jiang, Y., Wooley, P.H., Xu, Z., and Yang, S.Y., Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis. J Orthop Sci, 2013. 18(3): p. 478-485.
55. Fan, J., Li, J., and Fan, Q., Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARgamma. Mol Med Rep, 2015. 12(3): p. 4759-4765.
56. Li, L., Zeng, Z., and Cai, G., Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine, 2011. 18(11): p. 985-989.
57. Peng-Zhang, Dai, K, Yan, S., Yan, W., Chen, D., and Xu, Z., Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. European Journal of Pharmacology, 2009. 607(3): p. 1-5.
58. Pu, P., Gao, D.-M., Mohamed, S., Chen, J., Zhang, J., Zhou, X.-Y., Zhou, N.-J., Xie, J., and Jiang, H., Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Archives of biochemistry and biophysics, 2012. 518(1): p. 61-70.
59. Wayne Elwood , J.O.Lotvall., Peter Jo Barnes, and K. Fan Chung, Effect of Dexamethasone and Cyclosporin A on Allergen-induced Airway Hyperresponsiveness and Inflammatory Cell Responses in Sensitized Brown-Norway Rats. American Journal of Respiratory and Critical Care Medical, 1992. 145(6): p. 1289-1294.
60. Rickard, D.J., Sullivan,T.A., Shenker, B.J., Leboy, P.S., and Kazhdan, I., Induction of Rapid Osteoblast Differentiation in Rat Bone Marrow Stromal Cell Cultures by Dexamethasone and BMP-2. Developmental Biology, 1994. 161(1): p. 218-228.
61. Agamemnon E.Grigoriadis, Johan N.M.Heersche., and Jane E. Aubin, Differentiation of Muscle, Fat, Cartilage, and Bone from Progenitor Cells Present in a Bone-derived Clonal Cell Population: Effect of Dexamethasone. Journal of Cell Biology, 1988. 217(7): p. 2139-2151.
62. Phoebe S. Leboy, Jon.N.Beresford., Carole Devlin, and Maureen E. Owen, Dexamethasone Induction of Osteoblast mRNAs in Rat Marrow Stromal Cell Cultures. Journal of Celluar Physiology, 1991. 146(3): p. 370-378.
63. Olivia Fromigue´ , Pierre.J.Marie., Abderrahim Lomri, Differential effects of transforming growth factor β2, dexamethasone and 1,25-duhydroxyvitamin D on human bone marrow stromal cells. Cytokine, 1997. 9(8): p. 613-623.
64. Jorgensen, N.R., Henriksen, Z., Sorensen, O.H., and Civitelli, R., Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids, 2004. 69(4): p. 219-226.
65. Coelho,M.J., Fernandes,M.H., Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. biomaterials, 2000. 21(11): p. 1095-1102.
66. Beresford,J.N., Joyner,C.J., Devlin,C., Triffitt,J.T., The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol, 1994. 39(11): p. 941-947.
67. Mikami, Y., Omoteyama, K., Kato, S., and Takagi, M., Inductive effects of dexamethasone on the mineralization and the osteoblastic gene expressions in mature osteoblast-like ROS17/2.8 cells. Biochem Biophys Res Commun, 2007. 362(2): p. 368-373.
68. Jane B. Lian, V.S., Fauzia Aslam, Baruch Frenkei, Jack Green, Micheal Hamrah, Gary S. Stein, and Janet L. Stein, Species-Specific Glucocorticoid and 1,25Dihydroxyvitamin D Responsiveness in Mouse MC3T3-E1 Osteoblasts: Dexamethasone Inhibits Osteoblast Differentiation and Vitamin D DownRegulates Osteocalcin Gene Expression. Endocrinology, 1997. 138(5): p. 2117-2127.
69. Atmani, H., Chappard, D., and Basle, M.F., Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem, 2003. 89(2): p. 364-372.
70. Vassilios I. Sikavitsas, Grogory.N.Bancroft., Heidi L. Holtorf, John A. Jansen, and Antonios G. Mikos, Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. PNAS, 2003. 100(25): p. 14683-14688.
71. Astrid D. Bakker, K.S., Jenneke Klein-Nulend, Elisabeth H. Burger, The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. journal of Biomechanics, 2001. 34(5): p. 671-677.
72. Fredrick M. Pavalko, Neal.X.Chen., Charles H. Turner, David B. Burr, Simon Atkinson, Yeou-Fang Hsieh, Jinya Qiu, and Randall L. Duncan, Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. American Journal of Physiology Cell Physiology, 1998. 275(6): p. 1591-1601.
73. Holtorf, H.L., Jansen, J.A., and Mikos, A.G., Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone. J Biomed Mater Res A, 2005. 72(3): p. 326-334.
74. Kathleen M. Reich, Todd.N.McAllister., Sivaramaprasad Gudi, and John A. Frangos, Activation of G Proteins Mediates Flow-Induced Prostaglandin E2 Production in Osteoblasts. Endocrinology, 1997. 138(3): p. 1014-1018.
75. Stein, G.S., Lian, J.B., Stein, J.L., Van Wijnen, A.J., and Montecino, M., Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2): p. 593-629.
76. Ko, Y.G., Kim, Y.H., Park, K.D., Lee, H.J., Lee, W.K., Dal Park, H., Kim, S.H., Lee, G.S., and Ahn, D.J., Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001. 22(15): p. 2115-2123.
77. Yu, H., Gu, W., Li, N., Zhang, F., Liu, X., and Wei, H., Research Progress of Naringin. Hubei Agricultural Sciences, 2011. 8(1): p. 5-5
78. Ho, M.H., Kuo, P.Y., Hsieh, H.J., Hsien, T.Y., Hou, L.T., Lai, J.Y., and Wang, D.M., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004. 25(1): p. 129-138.
79. Kitagawa, T., Yamaoka, T., Iwase, R., and Murakami, A., Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol Bioeng, 2006. 93(5): p. 947-954.
80. Kathleen M. Reich, Carol. V. Gay., and John A. Frangos Fluid Shear Stress as a Mediator of Osteoblast Cyclic Adenosine Monophosphate Production. Journal of Celluar Physiology, 1990. 143(1): p. 100-104.
81. McCoy, R.J., Jungreuthmayer, C., and O'Brien, F.J., Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnol Bioeng, 2012. 109(6): p. 1583-1594.
82. Liu, H., Yazici, H., Ergun, C., Webster, T.J., and Bermek, H., An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater, 2008. 4(5): p. 1472-1479.
83. Rey, C., Freche, M., Heughebaert, M., Heughebaert, J.C., Lacout, J.L., Lebugle, A., Szilagyi, J., and Vignoles,M., Apatite Chemistry in Biomaterial Preparation, Shaping and Biological Behaviour. Bioceramics, 1991.1(1): p. 57-64.
84. Wong, M.M., Rao, L.G., Hao, L., Lynn Hamilton, Jeffrey Tong, William Sturtridge, Robert McBroom, Jane E. Aubin, and Timothy M. Murry, Long-Term Effects of Physiologic Concentrations of Dexamethasone on Human Bone-Derived Cells. Journal of Bone and Mineral Research, 1990. 5(8): p. 803-813.
85. 胡新永、呂原、楊華清、耿同超, 不同濃度地塞迷松對成骨細胞骨鈣素基因表達和細胞增殖的影響. 中國康復醫學雜誌, 2007. 22(10): p. 899-903.
86. Walsh,S., .Jordan, J.R., Jefferiss, C., Stewart.K, and Beresford,J. N., High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology, 2001. 40(1): p. 74-83.

無法下載圖示 全文公開日期 2023/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE