簡易檢索 / 詳目顯示

研究生: 游承璋
Cheng-Chang Yu
論文名稱: 探討發光二極體(LED)對骨細胞刺激之行為表現
The Investigation for The Effect of LED Stimulus on Osteoblastic Cells
指導教授: 何明樺
Ming-Hua Ho
洪儒生
Lu-Sheng Hong
口試委員: 李伯訓
BS Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 160
中文關鍵詞: 光治療細胞色素C氧化酵素
外文關鍵詞: phototherapy, cytochrome c oxidase
相關次數: 點閱:256下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低能量雷射治療的發展已經超過30年,並將光治療技術應用於許多醫學領域,包括減緩疼痛與加速傷口復原,然而雷射儀器不但昂貴,同時也無法結合各種波長進行光治療,因此本實驗利用可調式發光二極體,當作光刺激研究的光源。實驗中利用不同波長及能量來探討類骨母細胞(UMR-106)經過光刺激後之粒線體活性、蛋白質合成、細胞增生與細胞貼附等行為表現,同時將檢測鹼性磷酸酶(ALPase)活性與鈣離子沉積,作為光照對骨細胞特徵表現之影響。
    實驗中所使用的波長為652nm(紅光)、590nm(黃光)與415nm(藍光),刺激能量為0.1~20 J/cm2。綜合實驗結果發現,細胞的粒線體活性、細胞增生與骨細胞特徵表現等行為表現,在藍光低能量(0.5J/cm2)刺激下,有最佳的提升效果,而在紅光與黃光照射下,最適合的刺激能量則為5 J/cm2,推測光受體分子除吸收波段不同外,對能量的需求程度也不同,因此短波長光源(藍光)利用較少的照射能量,即可刺激細胞產生特定生理反應,而紅黃光則需較高的能量。在高能量(10~20 J/cm2)刺激下,無論所使用為哪種波長對於細胞的行為表現都有抑制的情況發生。實驗中也發現,在相同能量不同功率的條件下,利用三種波長照射細胞,其生理表現皆沒有明顯的差異,因此認為在本實驗所採取的光刺激系統中,能量應為主要的決定性因素而非功率。


    In this research, the adjustable LED (Light Emitting Diode) light with various energy and wavelength was used as light source to stimulate osteoblast-like cells, UMR-106. The responses of osteoblastic cells were investigated, including MTT assay, total protein synthesis, cell proliferation and cell attachment. Also, the ALPase (Alkaline phosphatase) activity and calcium deposition were also tested for the relazation of osteoblastic differentiation.
    The wavelengths used in this study included 652 (red light), 590 (yellow light) and 415 nm (blue light) and the powers were 2.71, 3.89 and 4.17 mW/cm2, respectively. The energy for LED stimulus was ranged from 0.1 to 20 J/cm2. The experimental outcomes indicated that the optimal stimulation energy of blue light (0.5J/cm2) can promote the mitochondria activity, cell proliferation and expression of osteoblastic markers. However, the effective energy of red and yellow lights was higher (5J/cm2). The possible reason would be that photo-acceptors for lights with different wave length are different, so the required energy levels also diverse. On the other hand, to the light stimuli with high energy (10~20 J/cm2) would inhibit the cell activity and differentiation, no matter which wave length was used. The importance of stimulation power and energy was also investigated in this study. The results suggested that the irradiation energy is dominant, compared with the stimulation power.

    致 謝 I 摘 要 II Abstract III 目錄 IV 圖目錄 X 表目錄 XIII 中英文對照表 XIV 第一章 序論 1 第二章 文獻回顧 3 2.1 人體骨頭的生成 3 2.1.1骨先驅細胞( Osteoprogenitor Cells ) 4 2.1.2 造骨細胞(Osteoblasts) 4 2.1.3骨細胞(Osteocytes) 6 2.1.4 蝕骨細胞(Osteoclasts) 7 2.1.5 骨質疏鬆症 8 2.1.5-1誘發骨質疏鬆症之原因 8 2.1.5-2骨質疏鬆症的治療 9 2.1.5-3新興的物理治療 10 2.2光源之研究與探討 11 2.2.1光的性質 11 2.2.2能階的存在 12 2.3 光在生物醫學上之應用 13 2.3.1光治療之定義 13 2.3.2光治療之醫學發展 13 2.3.3雷射在醫學上的應用 14 2.4低能量光治療之原理與應用 15 2.4.1 低能量光治療之定義 15 2.4.2 低能量光治療之原理 15 2.4.3 低能量光治療之應用 16 2.5二極體(LED)之原理與應用 17 2.5.1 半導體概論 17 2.5.2能帶的產生 17 2.5.3發光二極體的發光原理 19 2.5.4實驗中發光二極體(LED)之選用 21 2.6光生物調節機制 23 2.6.1光生物刺激效應可能之機制 23 2.6.1-1呼吸鏈反應 24 2.6.1-2細胞色素C氧化酵素之結構 26 2.6.2 光刺激之首要機制 ( Primary Mechanisms ) 28 2.6.3 光刺激之間接機制( Secondary Mechanisms ) 29 2.6.3-1 細胞色素C氧化酵素之吸收光譜 29 2.6.3-2 生物表現之吸收光譜 30 2.6.3-3 細胞色素氧化酵素與ATP之吸收光譜 32 2.6.4 光刺激生物反應機制之結論 33 2.7光癒合研究之文獻比較 35 2.7.1 光刺激對骨細胞之影響 36 2.7.1-1光刺激能量對骨母細胞/骨修復之影響 36 2.7.1-2光刺激波長對骨母細胞/骨修復之影響 37 2.7.2 光刺激對纖維母細胞之影響 41 2.7.2-1 光刺激能量對纖維母細胞之影響 41 2.7.2-2光刺激波長對纖維母細胞之影響 43 2.7.3 光刺激對其他細胞之影響 47 2.7.4 光刺激動物傷口之影響 49 2.7.4-1光刺激能量對動物傷口之影響 49 2.7.4-2光刺激波長對動物傷口之影響 51 2.7.5 光生物刺激之研究議題 53 第三章 實驗材料與方法 55 3.1 實驗藥品 55 3.2 實驗儀器 57 3.3 實驗之發光二極體儀器 58 3.3.1 光照元件與電路設計 58 3.3.2 光刺激方法 60 3.4 實驗設計與操作 62 3.4.1 實驗設計 62 3.4.2 實驗操作 63 3.5 實驗用細胞 65 3.5.1 細胞來源 65 3.5.2 細胞培養 66 3.5.3 細胞保存 67 3.5.4 解凍培養 67 3.6 實驗架構 68 3.7 分析方法及其步驟 69 3.7.1 細胞活性測試 (MTT) 69 3.7.2 細胞蛋白質濃度測試 71 3.7.3 Alkaline phosphatase (ALPase)定性染色 72 3.7.4 Alkaline phosphatase (ALPase)定量分析 73 3.7.5 Von Kossa 染色 74 3.7.7 系統溫度之測量 75 3.7.8 細胞貼附面積之測量 75 3.7.9 細胞數量測量 76 3.7.10 穿透式電子顯微鏡樣品製備 78 第四章 結果與討論 81 4.1 光刺激能量對系統溫度之影響 81 4.2 光刺激波長與能量對骨細胞行為表現之影響 83 4.2.1-1 光刺激對細胞粒線體活性之影響 84 4.2.1-2 光刺激對細胞粒線體活性之延遲效應 89 4.2.2-1 光刺激對細胞蛋白質分泌之影響 94 4.2.2-2光刺激對細胞蛋白質分泌之延遲效應 98 4.2.3-1 光刺激對細胞增生之影響 101 4.2.3-2 光刺激對細胞增生之延遲效應 106 4.3 光刺激對骨細胞形態之影響 109 4.4 光刺激功率對骨細胞行為表現之影響 114 4.4.1 不同功率對粒線體活性之探討 114 4.4.2 不同功率對細胞蛋白質分泌與細胞增生之探討 118 4.5 光刺激對骨細胞特徵值之影響 123 4.5.1 光刺激對骨細胞鹼性磷酸酶(ALP)活性之影響 124 4.5.1-1鹼性磷酸酶活性之定量分析 124 4.5.1-2鹼性磷酸酶活性之定性分析 128 4.5.2 光刺激對骨細胞礦化程度(鈣離子沉積)之影響 132 第五章 結論 137 參考文獻 139 附錄 一、發光二極體元件 155 附錄 二、ALP檢量線 158 附錄 三、Image-J算數細胞面積操作 159 圖目錄 圖2-1 骨母細胞生長分化之過程 5 圖2-2 電磁波光譜圖 11 圖2-3 能帶圖 ( a : 金屬導體;b : 半導體;c : 絕緣體 ) 18 圖2-4 原子不連續能階圖 19 圖2-5 半導體之PN接面 21 圖2-6 發光二極體的發展 22 圖2-7 光生物刺激反應可能的機制 23 圖2-8 粒線體之呼吸電子傳遞鏈 24 圖2-9 細胞色素C氧化酵素之結構 27 圖2-10 電子激發態 28 圖2-11 細胞色素C氧化酵素吸收光譜圖 30 圖2-12 細胞貼附與DNA、RNA合成光譜 31 圖2-13 細胞色素氧化酵素與ATP吸收光譜圖 32 圖2-14 光生物反應可能的機制 34 圖3-1 (a) LED電路系統正面-光源元件 59 圖3-1 (b) LED電路系統背面-風扇 59 圖3-2 LED光照實驗設備 64 圖3-3 類骨細胞 66 圖3-4 光照實驗架構 68 圖3-5 MTT反應原理 69 圖3-6 BCA反應原理 71 圖3-7 ALP反應原理 73 圖3-8 血球計數盤 76 圖3-9 血球細數器九宮格 77 圖4-1 光刺激能量對溫度之變化 82 圖4-2 波長與能量對骨細胞粒線體活性之影響(光照後第1天) 85 圖4-3 波長與能量對骨細胞粒線體活性之影響(光照後第3、5天) 87 圖4-4 光刺激骨細胞粒線體活性之延遲影響(能量0.5、5 J/cm2) 92 圖4-5 光刺激骨細胞粒線體活性之延遲影響(能量10J/cm2) 93 圖4-6 波長與能量對骨細胞蛋白質分泌之影響(光照後第1天) 96 圖4-7 波長與能量對骨細胞蛋白質分泌之影響(光照後第3、5天) 97 圖4-8 光刺激骨細胞蛋白質之延遲影響(能量0.5、5 J/cm2) 100 圖4-9 光刺激骨細胞蛋白質之延遲影響(能量10 J/cm2) 101 圖4-10 波長與能量對骨細胞增生影響之量測(光照後第1天) 102 圖4-11 波長與能量對骨細胞增生影響之量測(光照後第3、5天) 105 圖4-12 光刺激骨細胞增生之延遲影響(能量0.5、5 J/cm2) 107 圖4-13 光刺激骨細胞增生之延遲影響(能量10 J/cm2) 108 圖4-14 紅光於不同能量刺激後骨細胞之形態 110 圖4-15 黃光於不同能量刺激後骨細胞之形態 111 圖4-16 藍光於不同能量刺激後骨細胞之形態 112 圖4-17 紅黃光於不同功率刺激下,骨細胞粒線體活性之趨勢 117 圖4-18 藍光於不同功率刺激下,骨細胞粒線體活性之趨勢 118 圖4-19 紅光於不同功率刺激下,骨細胞行為之表現 120 圖4-20 黃光於不同功率刺激下,骨細胞行為之表現 121 圖4-21 藍光於不同功率刺激下,骨細胞行為之表現 122 圖4-22 紅光刺激下,骨細胞鹼性磷酸酶活性之變化 126 圖4-23 黃光與藍光刺激下,骨細胞鹼性磷酸酶活性之變化 127 圖4-24 紅光刺激下,骨細胞鹼性磷酸酶表現之染色 129 圖4-25 黃光刺激下,骨細胞鹼性磷酸酶表現之染色 130 圖4-26 藍光刺激下,骨細胞鹼性磷酸酶表現之染色 131 圖4-27 紅光刺激下,骨細胞鈣離子沉積之表現 133 圖4-28 黃光刺激下,骨細胞鈣離子沉積之表現 134 圖4-29 藍光刺激下,骨細胞鈣離子沉積之表現 135 表目錄 表2-1 光刺激骨細胞之參數 39 表2-2 光刺激纖維母細胞之參數 44 表2-3 光刺激細胞之參數 48 表2-4 光刺激活體動物傷口之參數 52 表3-1 LED光照元件 61 表3-2 發光二極體功率、能量與光照時間之對照表 63 表3-3 老鼠類骨母細胞 資料 (生物資源保存及研究中心) 65 表4-1 紅光(652nm)刺激下,光照後之細胞面積 113 表4-2 黃光(590nm)刺激下,光照後之細胞面積 113 表4-3 藍光(415nm)刺激下,光照後之細胞面積 113

    Anderson RR, and Parrish JA , The optics of human skin , JOURNAl OF INVESTIGATIVE DERMATOLOGY , 1981 ; 77 ( 1 ) : 13-19

    Allendorf JDF, Bessler M, Huang J, et al., Helium-neon laser irradiation at fluences of 1, 2, and 4 J/cm(2) failed to accelerate wound healing as assessed by both wound contracture rate and tensile strength , LASERS IN SURGERY AND MEDICINE, 1997;20 ( 3 ) : 340 - 345

    Almeida-Lopes L, Rigau J, Zangaro RA, et al. , Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence , LASERS IN SURGERY AND MEDICINE , 2001;29 ( 2 ) : 179 - 184

    Arisu HD, Turkoz E, Bala O, Effects of Nd : Yag laser irradiation on osteoblast cell cultures , LASER IN MEDICAL SCIENCE , 2006; 21 ( 3 ) : 175 - 180

    Amorim JCF, Silveira LD, et al., Clinical study of the gingiva healing after gingivectomy and low-level laser therapy , PHOTOMEDICINE AND LASER SURGERY, 2006;24 ( 5 ) : 588 - 594

    Basford JR, Low-energy laser therapy: controversies and new research findings , LASERS IN SURGERY AND MEDICINE, 1989;9: 1-5.

    Bernstein EF, Sullivan FJ, Mitchell JB, et al., Biology of chronic radiation effect on tissue and wound-healing, CLINICS IN PLASTIC SURGERY , 1993;20 ( 3 ) : 435 - 453

    Bolton P, Young S, Dyson M , The direct effect of 860 nm light on cell proliferation and on succinic dehydrogenase activity of human fibroblasts in vitro , LASER THERAPY , 1995 ; 7: 55 – 60

    Barushka O, Yaakobi T, et al., Effect of Low-Energy Laser (He-Ne) Irradiation on the Process of Bone Repair in the Rat Tibia , BONE , 1995 ; 16 ( 1 ): 47 - 55

    Bednarska K, Rozga B, et al., Effect of low power red light laser irradiation on the viability of human skin fibroblast, RADIATION AND ENVIRONMENTAL BIOPHYSICS , 1998;37 ( 3 ) : 215 - 217

    Craford MG, Visible Light-Emitting Diodes: Past, Present, and Very Bright Future , MRS BULLETIN , 2000; 25 ( 10 ) : 27

    Chen YJ, Jeng, JH, Lee BS, et al. , Effects of Nd : YAG laser irradiation on cultured human gingival fibroblasts , LASERS IN SURGERY AND MEDICINE , 2000 ; 27 ( 5 ) : 471-478

    Chen YJ, Jeng JH, et al., Long-term effect of pulsed Nd : YAG laser irradiation on cultured human periodontal fibroblasts , LASERS IN SURGERY AND MEDICINE , 2005;36 ( 3 ) : 225 - 233

    Corazza AV, Jorge J, et al. , Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources , PHOTOMEDICINE AND LASER SURGERY , 2007;25 ( 2 ) : 102 - 106

    Dempster DW, Lindsay R, Pathogenesis of osteoporosis , LANCET , 1993; 341 ( 8848 ): 797-801.

    Dinh HKB, Zhao BT, Schuschereba ST, et al. , Gene expression profiling of the response to thermal injury in human cells , PHYSIOLOGICAL GENOMICS , 2001 ; 7 ( 1 ) : 3-13

    Desmet KD, Paz DA, Corry JJ, et al. ,Clinical and experimental applications of NIR-LED photobiomodulation , PHOTOMEDICINE AND LASER SURGERY , 2006;24 ( 2 ) : 121 - 128

    Eells JT, VerHoeve J, et al. , Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy , MITOCHONDRION , 2004;4 ( 5 - 6 ) : 559 - 567

    Feist IS, De Micheli G, Carneiro SRS, et al. , Adhesion and growth of cultured human gingival fibroblasts on periodontally involved root surfaces treated by Er : YAG laser , JOURNAL OF PERIODONTOLOGY , 2003 ; 74 ( 9 ) : 1368-1375

    Fujihara NA, Hiraki KRN, Marques MM, Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence , LASERS IN SURGERY AND MEDICINE , 2006;38 ( 4 ) : 332 - 336

    Gam AN, Thorsen H, LONNBERG F, The effect of low-level laser therapy on musculoskeletal pain , PAIN , 1993;52 ( 1 ) : 63 - 66

    Guzzardella GA, Fini M, Torriclli P, et al. , Laser stimulation on bone defect healing: An in vitro study , LASERS IN MEDICAL SCIENCE , 2002; 17 (3) : 216 - 220

    Hunter DG, Rerka MX, Diode-laser photocoagulation for threshold retinopathy of prematurity–arandomized study , PHTHALMOLOGY ,1993;100 ( 2 ):238-244

    Hawkins DL, MacKay RJ, MacKay SLD, et al., Human interleukin 10 suppresses production of inflammatory mediators by LPS-stimulated equine peritoneal macrophages , VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY , 1998;66 ( 1 ) : 1 - 10

    Hohenleutner S, Badur-Ganter E, Landthaler M, et al., Long-term results in the treatment of childhood hemangioma with the flashlamp-pumped pulsed dye laser: An evaluation of 617 cases , LASERS IN SURGERY AND MEDICINE , 2001;28 ( 3 ) : 273 - 277

    Heitbrink D, Sigurdson H, et al., Transient binding of CO to Cu-B in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: A time-resolved step-scan Fourier transform infrared investigation , BIOPHYSICAL JOURNAL , 2002;82 ( 1 ) : 1-10

    Hamajima S, Hiratsuka K, et al., Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts , LASERS IN MEDICAL SCIENCE , 2003;18 ( 2 ) : 78 - 82

    Hawkins D, Abrahamse H, Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts , PHOTOMEDICINE AND LASER SURGERY , 2005;23 ( 3 ) : 251 - 259

    Hamblin, Michael R, Waynant , Ronald W, Anders, Juanita, Mechanisms for Low-Light Therapy , PROCEEDINGS OF THE SPIE , 2006; 6140:1 - 12

    Hawkins DH, Abrahamse H, The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation , LASERS IN SURGERY AND MEDICINE , 2006;38 ( 1 ) : 74 - 83

    Houreld NN, Abrahamse H, Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner , LASERS IN MEDICAL SCIENCE , 2008 ; 23 : 11-18

    Karu T, Kalendo G, et al., Biostimulation of Hela cells by low-intensity visible light II. Stimulation of DNA and RNA synathesis in a wide spectral range , IL NUOVO CIMENTO D , 1984; 3 ( 2 ) :309-318

    Karu T, Pyatibrat L, Kalendo G, Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro , JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY , 1995;27 ( 3 ) : 219 - 223

    Karu TI, Pyatibrat LV, Kalendo GS, et al., Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro , LASERS IN SURGERY AND MEDICINE , 1996;18 :171 - 177

    Komori T, Kishimoto T, Cbfa1 in bone development , CURRENT OPINION IN GENETICS & DEVELOPMENT , 1998;8 ( 4 ) : 494 - 499

    Karu T, Primary and secondary mechanisms of action of visible to near-IR radiation on cells , JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY , 1999;49 ( 1 ) : 1 - 17

    Kipshidze N, Nikolaychik V, Keelan MH, et al., Low-power helium : neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro , LASERS IN SURGERY AND MEDICINE , 2001;28 ( 4 ) : 355 - 364

    Kreisler MB, Al Haj H, Noroozi N, et al., Efficacy of low level laser therapy in reducing postoperative pain after endodontic surgery - A randomized double blind clinical study , INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY , 2004;33 ( 1 ) : 38 - 41

    Karu TI, Pyatibrat, Lydmila V, Kolyakov, Sergei F, et al., Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation , JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY , 2005;81 : 98 - 106

    Khadra M, Lyngstadaas SP, Haanaes, HR, et al., Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material , BIOMATERIALS , 2005;26 ( 17 ) : 3503 - 3509

    Lubart R, Wollman Y, Friedmann H, et al., Effects of visible and near-infrared lasers on cell-cultures , JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY , 1992;12 ( 3 ) : 305 - 310

    Loevschall H, Arenholtbindslev D, Effect of low-level diode-laser irradiation of human oral-mucosa fibroblasts in-vitro , LASERS IN SURGERY AND MEDICINE , 1994;14 ( 4 ) : 347 - 354

    Lowe AS, Walker MD, O'Byrne M, et al., Effect of low intensity monochromatic light therapy (890 nm) on a radiation-impaired, wound-healing model in murine skin , LASERS IN SURGERY AND MEDICINE , 1998;23 ( 5 ) : 291-298

    Luo GJ, Sun XY, et al., Hyperthermia stimulates energy proteasome dependent protein degradation in cultured myotubes , AMERICAN JOURNAL OF PHYSIOLOGY REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY , 2000;278 ( 3 ) : 749-756

    Mester E, Spiry T, Szende B , et al. , Effect of laser rays on wound healing , AMERICAN JOURNAL OF SURGERY, 1971;122 ( 4 ):532 - 535

    Midda M, RENTONHARPER P, Lasers in dentistry , BRITISH DENTAL JOURNAL , 1991;170 ( 9 ) : 343 - 346

    Menovsky T, Beek JF, Thomsen SL, Laser(-assisted) nerve repair. A review , NEUROSURGICAL REVIEW , 1995;18 ( 4 ) : 225 - 235

    Milgrom LR, The colours of life : An introduction to the chemistry of porphyrins and related compounds, OUP, Oxford, 1997

    Marques MM, Pereira AN, Fujihara NA, et al., Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts , LASERS IN SURGERY AND MEDICINE , 2004;34 ( 3 ) : 260 - 265

    Moore P, Ridgway TD, Higbee RG, et al., Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro ,
    LASERS IN SURGERY AND MEDICINE , 2005;36 ( 1 ) : 8 - 12

    Nicolau RA, Jorgetti V, Rigau J, et al., Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity: an experimental animal study , LASERS IN MEDICAL SCIENCE , 2003 ; 18 ( 2 ) : 89 - 94

    Ozawa Y, Shimizu N, Kariya G, et al., Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells , BONE , 1998; 22 ( 4 ) : 347 - 354

    Ohara M, Kawashima Y, Katoh O, et al., Blue light inhibits the growth of B16 melanoma cells , JAPANESE JOURNAL OF CANCER RESEARCH , 2002 ; 93 ( 5 ) : 551 - 558

    Oron U, Ilic S, De Taboada L, et al., Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture , PHOTOMEDICINE AND LASER SURGERY , 2007; 25 ( 3 ) : 180-182

    Pogrel MA, Chen JW, Zhang K, Effects of low-energy gallium -aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes , LASERS IN SURGERY AND MEDICINE , 1997;20 ( 4 ) : 426 - 432

    Pereira AN, Eduardo CD, et al., Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts , LASERS IN SURGERY AND MEDICINE , 2002 ; 31 ( 4 ) : 263 - 267

    Pastore D, Greco M, Passarella S, Specific helium-neon laser sensitivity of the purified cytochrome c oxidase , INTERNATIONAL JOURNAL OF RADIATION BIOLOGY , 2000;76 ( 6 ) : 863 - 870

    Pourzarandian A, Watanabe H, Ruwanpura SMPM, et al., Effect of low-level Er : YAG laser irradiation on cultured human gingival fibroblasts , JOURNAL OF PERIODONTOLOGY , 2005;76 ( 2 ) :187-193

    Qiu Q, Sayer M, Kawaja M, et al., Attachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces , JOURNAL OF BIOMEDICAL MATERIALS RESEARCH , 1998;42 ( 1 ) : 117-127

    Rogvihansen B, Ellitsgaard N, Funch M, et al., Low level laser treatment of chondromalacia patellae, INTERNATIONAL ORTHOPAEDICS , 1991;15 (4): 359-361

    Rood PA, Wheeland RG, et al. , Low-energy Helium-Neon laser irradiation does not alter human keratinocyte differentiation, CLINICAL RESEARCH , 1991;39 ( 1 ) : 445 - 448

    Reddy GK, Stehno-Bittel L, Enwemeka CS, Laser photostimulation of collagen production in healing rabbit Achilles tendons , LASERS IN SURGERY AND MEDICINE , 1998;22( 5 ) : 281 - 287

    Reddy GK, Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds, LASERS IN SURGERY AND MEDICINE , 2003;33 ( 5 ) :344 - 351

    Rylander MN, Diller KR, Wang SH, et al., Correlation of HSP70 expression and cell viability following thermal stimulation of bovine aortic endothelial cells , JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2005; 127 ( 5 ) : 751-757

    Rabelo SB, Villaverde AB, Nicolau RA, et al., Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy , PHOTOMEDICINE AND LASER SURGERY , 2006;24 ( 4 ) : 474 - 479

    Renno ACM, Mcdonnell PA, Parizotto NA, et al., The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro.,PHOTOMEDICINE AND LASER SURGERY , 2007 ; 25 ( 4 ) : 275 - 280

    Sandford MA, Walsh LJ, Thermal effect during dessensitisation of teeth with gallium-aluminium-arssenide lasers , PERIODONTOL , 1994;15:25-30

    Stein GS, Lian JB, et al.,Transcriptional control of osteoblast growth and differentiation , PHYSIOLOGICAL REVIEWS ,1996 76 ( 2 ) : 593-629

    Skoog D, Principles of Instrumental Analysis 5th edition , Saunders College Publishing, 1997

    Schwartz F, Brodie C, Appel E, et al., Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures , JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY , 2002; 66 ( 3 ) : 195 - 200

    Silva AN, Pinheiro ALB, Oliveira MG, et al., Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: An experimental animal study , JOURNAL OF CLINICAL LASER MEDICINE & SURGERY , 2002 ; 20 ( 2 ):83 - 87

    Streeter J, De Taboada L, Oron U, Mechanisms of action of light therapy for stroke and acute myocardial infarction , MITOCHONDRION , 2004; 4 : 569 - 576

    Salgado AJ, Coutinho OP, Reis RL, Bone tissue engineering: State of the art and future trends , MACROMOLECULAR BIOSCIENCE , 2004 , 4 ( 8 ) : 743-765

    Stein A, Benayahu D, Maltz L, et al., Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro , PHOTOMEDICINE AND LASER SURGERY , 2005; 23 ( 2 ) :161-166

    Thawer HA, Houghton PE, Effect of laser irradiation on the growth and development of fetal mouse limbs in an in vitro model , LASERS IN SURGERY AND MEDICINE , 1999;24 ( 4 ) : 285-295

    Tuby H, Maltz L, Oron U, Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture , LASERS IN SURGERY AND MEDICINE , 2007;39 ( 4 ) : 373 - 378

    Ueda Y, Shimizu N, Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells , JOURNAL OF CLINICAL LASER MEDICINE &SURGERY , 2003;21 ( 5 ) : 271-277

    Vinck EM, Cagnie BJ, Cornelissen MJ, et al., Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation , LASERS IN MEDICAL SCIENCE , 2003;18 ( 2 ) : 95 - 99

    Vladimirov YA, Osipov AN, Klebanov GI, Photobiological principles of therapeutic applications of laser radiation , BIOCHEMISTRY-MOSCOW , 2004;69 ( 1 ) : 81 - 90

    Wark JD, Osteoporosis: pathogenesis, diagnosis, prevention and magagement , BAILLIERES CLINICAL ENDOCRINOLOGY AND METABOLISM , 1993;7( 1 ): 151-181
    Webb C, et al., Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: Possible mechanisms for increase in cell counts , LASERS IN SURGERY AND MEDICINE ,1998;22 (5): 294 - 301

    Walker MD, Rumpf S, Baxter GD, et al., Effect of low-intensity laser irradiation (660 nm) on a radiation-impaired wound-healing model in murine skin , LASERS IN SURGERY AND MEDICINE , 2000;26(1) : 41-47

    Whelan H, et al., The NASA Light emitting diode medical program progress in space flight terrestrial applications , SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM , 2000;504 : 37 - 43

    Whelan HT, Buchmann EV, Whelan NT, et al., NASA light emitting diode medical applications: From deep space to deep sea , SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, 2001;552 : 35-45

    Whelan HT, Smits RL, et al., Effect of NASA light-emitting diode (LED) irradiation on wound healing , JOURNAL OF CLINICAL LASER MEDECINE AND SURGERY , 2001;19: 305 - 314

    Whelan HT, Buchmann EV, Dhokalia A, et al., Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice , JOURNAL OF CLINICAL LASER MEDECINE AND SURGERY, 2003;21: 67 - 74

    Yu BP, Suescum EA, et al., Effect of age related lipid peroxidation on membrane fluidity and phospholipase A2:modulation by dietary restriction , MECHANISMS OF AGEING & DEVELOPMENT ,1992;65: 17- 33

    Yu W, Naim JO, Lanzafame RJ, The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts , PHOTOCHEM PHOTOBIOL , 1994 ; 59 ( 2 ) : 167 - 170.

    Yu HS, Chang KL, Yu CL, et al., Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes , JOURNAL OF INVESTIGATIVE DERMATOLOGY , 1996;107 ( 4 ) : 593 - 596

    Yu W, Naim JO, Lanzafame RJ, Effects of photostimulation on wound healing in diabetic mice , LASERS IN SURGERY AND MEDICINE , 1997;20 ( 1 ) : 56 - 63

    Yamamoto M, Tamura K, Hiratsuka K, et al., Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation , LASERS IN MEDICAL SCIENCE , 2001;16 ( 3 ) : 213 - 217

    無法下載圖示 全文公開日期 2013/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE