簡易檢索 / 詳目顯示

研究生: 林育德
Yu-de Lin
論文名稱: 應用自動化光學檢測技術於彩色濾光片辨識系統之開發與研究
The Development and Research of Color Filter Recognition System by Applying Automatic Optical Inspecting Technology
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
鍾國亮
Kuo-Liang Chung
蘇德利
none
高志遠
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 彩色濾光片影像處理類神經網路
外文關鍵詞: color filter, image process, neural network
相關次數: 點閱:432下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於平面顯示器面板產業而言,在各種元件中,諸如:玻璃基板(glass substrate)、偏光板(polarizer)、背光板模組(backlight module)及彩色濾光片(color filter)等皆扮演著重要的角色。而為了能在色彩上有高品質的顯示能力,彩色濾光片更是不可或缺的重要元件。
    然而在彩色濾光片在製造流程中,常會因為外在環境及機台本身的因素發生瑕疵。傳統上,以人工來進行彩色濾光片的瑕疵檢測,常會有疲勞導致漏檢、檢測效率低,造成彩色濾光片良率下降以及生產成本增加。為了改善這些問題,本研究發展出一套彩色濾光片自動化檢測系統來取代傳統的人工檢測方式。
    本研究針對彩色濾光片的毛屑(fiber)、粉塵(particle)、膠化(gel)及光阻覆蓋(resist coating)四種瑕疵,使用影像處理技術把瑕疵影像強化後,利用影像分割將瑕疵分割出來,並找出面積(area)、長寬比(aspect ratio)、矩形比(squareness ratio)及毀損率(damage rate)四個有效的特徵值。
    最後,選用倒傳遞類神經網路(back-propagation neural network)及模糊類神經網路(fuzzy neural network)為分類器,進行瑕疵辨識分類。在160個測試樣本中,倒傳遞類神經網路辨識率為92.5%,模糊類神經網路辨識率為96.25%,由實驗結果證實本論文所提出之方法可以成功的應用於彩色濾光片瑕疵檢測系統,以降低人工檢測的誤差,提高生產良率。


    Glass substrate, polarizer, backlight module and color filter are important components of the liquid crystal display (LCD) flat panel industry. Color filter is important in providing high-quality color ability. However, the manufacturing process for color filters often produces defects from the external environment and mechanical factors. Traditionally, artificial inspection is applied to detect color filter defects with low efficiency, resulting in decreasing the color filter production yield and increasing the production cost. To resolve these problems, this study develops a color filter automatic inspecting system as an alternative for artificial detection.
    In this study, we selected four defects of different color filters including fiber, particle, gel, and resist coating. Image processing, image enhancement, and image segmentation were used to separate defects to obtain area, aspect ratio, squareness ratio, and damage rate.
    Finally, the back-propagation neural network and fuzzy neural network were adopted to classify these defects. The recognition rate of back-propagation neural network was 92.5% for 160 test samples, with a 96.25% recognition rate of fuzzy neural network. The experimental results indicated that the proposed method can be successfully applied to inspect color filter defects. In addition, the error of manual detection could be reduced effectively.

    摘要 I ABSTRACT III 致謝 III 目錄 VI 圖目錄 X 表目錄 XII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 影像處理技術方面 2 1.2.2 擷取特徵值方面 3 1.2.3 瑕疵分類方面 4 1.3 論文架構及研究流程 5 第2章 彩色濾光片 7 2.1 彩色濾光片簡介 7 2.2 彩色濾光片的基本構造 8 2.3 彩色濾光片的材料 9 2.4 彩色濾光片的製程 10 第3章 數位影像處理技術 12 3.1 空間域中的影像強化 12 3.1.1 影像負片 13 3.1.2 乘冪律轉換 13 3.1.3 直方圖等化 15 3.1.4 空間濾波 17 3.1.5 平滑空間濾波器 18 3.1.6 銳化空間濾波器 19 3.2 影像分割 20 3.2.1 二值化 20 3.2.2 統計式門檻值決定法 21 3.3 邊緣檢測 24 3.3.1 梯度運算子 24 3.3.2 Sobel邊緣檢測法 25 3.3.3 Laplacian邊緣檢測 26 3.3.4 Canny邊緣偵測法 27 3.4 形態學影像處理 30 3.4.1 膨脹 30 3.4.2 侵蝕 31 3.4.3 斷開 31 3.4.4 標記化 32 3.5 影像的特徵值 33 3.5.1 面積 33 3.5.2 最小外接矩形 33 3.5.3 長寬比 34 3.5.4 矩形比 34 3.5.5 毀損率 34 第4章 類神經網路 35 4.1 類神經網路的基本定義 35 4.2 類神經網路分類 36 4.3 倒傳遞類神經網路的架構 37 4.3.1 倒傳遞類神經網路的參數 38 4.3.2 倒傳遞類神經網路演算法 40 4.4 模糊類神經網路 44 第5章 實務與驗證 47 5.1 作業系統 47 5.2 程式開發軟體 47 5.3 硬體架構 48 5.4 彩色濾光片瑕疵種類 49 5.5 實驗流程 50 5.5.1 白色缺陷分割處理 53 5.5.2 黑色缺陷分割處理 54 5.6 瑕疵特徵值 55 5.7 倒傳遞類神經網路辨識結果 58 5.8 模糊類神經網路辨識結果 60 5.9 實驗結果與討論 62 第6章 結論與未來研究方向 64 6.1 結論 64 6.2 未來研究方向 65 參考文獻 66

    1.B. C. Jiang and S. J. Jiang, “Machine VisionBased
    Inspection of Oil Seals,” Journal of Manufacturing
    Systems, Vol.17, No.3, pp. 159-166, 1998.

    2.P. L. Hostis, F. Byers, F. Podio, and X. Tang,
    “Microscopic Image Analysis of Defect Areas in
    Optical Disks,” Proceedings of SPIE - The International
    Society for Optical Engineering, Vol. 3806, pp.106-112,
    1999.

    3.S. Y. Chul, C. D. Hyun, and P. K. Houm, “Multiscale
    Detection Defect in Thin Film Transistor Liquid Crystal
    Display Panel,” Japanese Journal of Applied Physics,
    Vol. 43, No. 8, pp. 5465–5468, 2004.

    4.B. C. Jiang, C. C. Wang, and H. C. Liu, “Liquid Crystal
    Display Surface Uniformity Defect Inspection Using
    Analysis of Variable Exponentially Weighted Moving
    Average Techniques,” International Journal of
    Production Research, Vol. 43, pp. 67-80, 2005.

    5.D. M. Tsai, P. C. Lin, and C. J. Lu, “An Independent
    Component Analysis Based Filter Design for Defect
    Detection in Low-Contrast Surface Images,” Pattern
    Recognition, Vol. 39, pp. 1679-1694, 2006.

    6.K. B. Lee, M. S. Ko, J. J. Lee, T. M. Koo, and K. H.
    Park, “Defect Detection Method TFT-LCD Panel Based on
    Saliency Map Model,” IEEE International Conference,
    Vol. 1, pp. 223-226, 2004.

    7.J. Y. Lee and S. I. Yoo, “Automatic Detection of Region-
    Mura Defect in TFT-LCD,” IEICE Transactions on
    Information and Systems, Vol. E87-D, No. 10, pp. 2371-
    2378, 2004.

    8.K. Nakashima, “Hybrid Inspection System for LCD Color
    Filter Panels,” IEEE Instrumentation and Measurement
    Technology Conference, Vol. 2, pp. 689-692, 1994.

    9.B. C. Jiang, S. L. Tsai, and C. C. Wang, “Machine
    Vision-Based Gray Relational Theory Applied to IC
    Marking Inspection,” IEEE Transactions on Semiconductor
    Manufacturing, Vol. 15, No. 4, pp. 531-539, 2002.

    10.C. L. Lee and S. Y. Chen, “Classification of Leaf
    Images,” International Journal of Imaging Systems and
    Technology, Vol. 16, No. 1, pp. 15-23, 2006.

    11.B. Gunsel and A. M. Tekalp, “Shape Similarity Matching
    for Query by Example,” Pattern Recognition, Vol. 31,
    No. 7, pp. 931-944, 1998.

    12.C. T. Su, T. Yang, and C. M. Ke, “A Neural Network
    Approach for Emiconductor Wafer Post-Sawing
    Inspection”, IEEE Transactions on Semiconductor
    Manufacturing, Vol. 15, No. 2, pp. 260-266, 2002.

    13.Y. Yao, X. Li, and Z. Yuan, “Tool Wear Detection with
    Fuzzy Classification and Wavelet Fuzzy Neural
    Network,” International Journal of Machine Tools and
    Manufacture, Vol. 39, pp. 1525-1538, 1999.

    14.C. L. Chang, H. H. Chang, and C. P. Hsu, “An
    Intelligent Defect Inspection Technique for Color
    Filter,” IEEE International Conference on
    Mechatronics, pp. 933-936, 2005

    15.顧鴻壽等編著,“光電平面面板顯示器基本概論”,高立圖書有
    限公司,2004.

    16.莊東漢等編著,“平面顯示器概論”,高立圖書有限公司,
    2008.

    17.繆紹綱,“數位影像處理活用Matlab”,全華科技圖書股份有限
    公司,1999.

    18.鍾國亮編著,“影像處理與電腦視覺”,東華書局,2006.

    19.N. Otsu, “A Threshold Selection Method from Gray Level
    Histogram,” IEEE Transactions on Systems, Man and
    Cybernetics, SMC-8, pp. 62-66, 1978.

    20.I. E. Sobel, “Camera Models and Machine Perception,”
    Ph.D. thesis, Stanford University, pp. 99, 1970.

    21.Gonzalez Woods, “Digtial Image Process,” Prentice
    Hall, New York, 2002.

    22.J. Canny, “A Computational Approach to Edge
    Detection,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679-714,
    1986.

    23.F. Chang, C. J. Chen, and C. J. Lu, “A Linear-Time
    Component Labeling Algorithm Using Contour Tracing
    Technique,” Computer Vision and Image Understanding,
    Vol. 93, No. 2, pp. 206-220, 2004.

    24.葉怡成編著,“類神經網路模式應用與實作”,儒林圖書,
    2006.

    25.李允中等編著,“模糊理論及其應用”,全華圖書,2008.

    26.I. C. Yeh, “Modeling Chaotic Two-Dimensional Mapping
    with Fuzzy Neuron Networks,” Fuzzy Sets and Systems,
    pp. 421-427, 1999.

    無法下載圖示 全文公開日期 2014/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE