簡易檢索 / 詳目顯示

研究生: 郭鳳如
Feng-Ju Kuo
論文名稱: 珈瑪骨釘之遲滯螺絲生物力學研究:探討螺絲彎曲破斷、螺絲咬合界面鬆脫與近端股骨骨切風險
Biomechanical Investigations of Lag Screws Used in Gama Nails: Considering Lag Screw Breakage, Interface Pull-Out, and Bone Cut-Out
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 李建和
Chian-Her Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 股骨近端骨折珈瑪骨釘遲滯螺絲彎曲破斷鬆脫骨切有限元素分析田口品質工程法類神經網路遺傳演算法
外文關鍵詞: proximal femur fracture, gamma nail, lag screw, bending breakage, pull-out, cut-out, finite element analysis, Taguchi method, artificial neural network, genetic algorithm
相關次數: 點閱:339下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 珈瑪骨釘(Gamma nail)已廣泛的應用於治療股骨近端骨折,其優點為(1)有較好的生物力學表現,可使病患提早下床承受自身重量並進行復健。(2)失血較少。(3)發生併發症和感染的機率較低,然而,臨床上研究仍發現植入物在治療過程中會有彎曲破斷(bending breakage)、骨切(cut-out)、鬆脫(loose)等失效問題,造成病人二次傷害。
    為了減少珈瑪骨釘發生失效的機率,本研究將對珈瑪骨釘的一些改良與設計進行探討,而由於之前尚未有研究探討改變遲滯螺絲上的螺絲參數對珈瑪骨釘破壞的影響,因此本研究將改良設計的重點參數放於遲滯螺絲上的螺紋,且也尚未有研究同時考慮彎曲強度、骨切強度、骨咬合強度*的最佳化,所以本研究目的是以彎曲強度、骨切強度、骨咬合強度為目標設計出最佳化的珈瑪骨釘。
    本研究先以田口直交表設計出二十五組參數不同的模型,再以SolidWorks建構出三維立體模型,並以有限元素法軟體-ANSYS Workbench 模擬分析模型之彎曲強度、骨切強度及骨咬合強度。接著使用變異數分析(ANOVA)來研究彎曲強度、骨切強度及骨咬合強度之設計參數的貢獻度,並且以田口參數化分析找出三種失效模式之最佳設計。最後再以遲滯螺絲之von Mises應力、反作用力及骨折處分離角度為目標產生類神經網路模型,並以遺傳演算法找出最佳設計之珈瑪骨釘。
    田口品質工程法中參數化分析結果顯示,遲滯螺絲之螺紋長度同時為影響彎曲、骨切、骨咬合強度的重要參數,而螺紋長度之最佳設計水準,在彎曲與骨切強度為最小的10 mm,但在骨咬合強度為最大的30 mm。本研究使用類神經網路及遺傳演算法所找出之最佳設計參數是在權重值Wc = 0、Wp = 0.5、Wb = 0.5的情況,最佳設計參數為:遲滯螺絲之螺紋長度為19.03 mm,外徑比為上根外徑7.94 mm、下根外徑8.06 mm,節距為3.39 mm,近端螺牙傾角為20度,近端根部弧角半徑為0.1 mm,遲滯螺絲距為7 mm。本研究結果可以幫助工程師設計出同時兼顧彎曲強度、骨切強度與骨咬合強度的珈瑪骨釘及幫助醫師依據病人的狀況選擇合適的植入物。


    Gamma nails have been used to treat proximal femoral fractures because of the advantages of immediate weight bearing capability, low blood loss, low infection risk, and shorter operating time. However, they still have the clinical complications such as screw breakage, screw cut-out, and screw loose.
    In order to reduce the failure rate, this research discussed the different designs of the gamma nail. There is no research to discuss the influence of the lag screw designs of gamma nails for the bending strength, the pull-out strength, and the cut-out strength. Thus, the purpose of this research was to find the optimal factors of gamma nails considered the bending strength, the pull-out strength, and the cut-out strength.
    Based on L25 orthogonal array, 3D models were created by using SolidWorks, then transformed into ANSYS Workbench to simulate the bending strength, the pull-out strength, and the cut-out strength. Analysis of the variance (ANOVA) was used to find the contribution of design factors, and the optimal combination of the lag screw was also obtained. Finally, the artificial neural network (ANN) models of the lag screws were developed to predict the von Mises stress, the reaction force, and the bone fracture separating degree. The optimal design of gamma nail would be obtained by using the genetic algorithm (GA).
    In the parametric analysis of this research, the thread length of the lag screw was the most important factor in the three types of the failure modes. The optimal design for the thread length of the lag screw in bending and cut-out strength was 10 mm, but in pull-out strength was 30 mm. We found that the optimal design using ANN and GA were 19.03 mm for thread length, 7.94 mm for outer diameter of upper lag screw, 8.06 mm for outer diameter of lower lag screw, 3.39 mm for pitch, 20 degree for proximal half angle, 0.1 mm for proximal root radius, 7 mm for distance of two lag screw. In addition, the optimal design was in the situation for Wc = 0, Wp = 0.5, Wb = 0.5. The findings of this research can help surgeons select suitable implant for their patients and assist engineers developing better implants.

    中文摘要--------------------------------I ABSTRACT--------------------------------II 致謝--------------------------------III 目錄--------------------------------IV 符號索引--------------------------------VIII 圖索引--------------------------------IX 表索引--------------------------------XI 第一章 緒論--------------------------------1 1.1 研究背景、動機與目的--------------------------------1 1.2 股骨的解剖學構造--------------------------------4 1.3 股骨近端骨折的治療方式--------------------------------5 1.4 珈瑪骨釘簡介--------------------------------6 1.5 文獻回顧--------------------------------8 1.5.1 臨床上的追蹤--------------------------------8 1.5.2 有限元素分析--------------------------------10 1.5.3 生物力學測試--------------------------------11 1.6 本文架構--------------------------------12 第二章 材料與方法--------------------------------14 2.1 研究方法簡介--------------------------------14 2.2 有限元素法簡介--------------------------------14 2.3 股骨模型之建立--------------------------------16 2.4 珈瑪骨釘模型之建立--------------------------------17 2.5 彎曲和骨切強度分析模型之建立--------------------------------22 2.5.1 有限元素的材料性質--------------------------------22 2.5.2 元素型式--------------------------------23 2.5.3 邊界條件--------------------------------25 2.5.4 接觸界面條件--------------------------------27 2.5.5 收斂性分析--------------------------------30 2.6 骨咬合強度分析模型之建立--------------------------------30 2.6.1 有限元素的材料性質--------------------------------32 2.6.2 元素型式--------------------------------32 2.6.3 邊界條件--------------------------------33 2.6.4 接觸界面條件--------------------------------33 2.6.5 收斂性分析--------------------------------34 2.7 田口參數化分析--------------------------------34 2.7.1 田口品質工程法--------------------------------34 2.7.2 彎曲強度之參數化分析--------------------------------37 2.7.3 骨切強度之參數化分析--------------------------------37 2.7.4 骨咬合強度之參數化分析--------------------------------38 2.8 類神經網路--------------------------------38 2.9 遺傳演算法--------------------------------44 第三章 結果--------------------------------49 3.1 有限元素分析之結果--------------------------------49 3.1.1 收斂性分析之結果--------------------------------49 3.1.2 彎曲強度模型分析之結果--------------------------------52 3.1.3 骨切強度模型分析之結果--------------------------------55 3.1.4 骨咬合強度模型分析之結果--------------------------------58 3.2 田口品質工程法之結果--------------------------------61 3.2.1 彎曲強度參數化分析之結果--------------------------------62 3.2.2 骨切強度參數化分析之結果--------------------------------64 3.2.3 骨咬合強度參數化分析之結果--------------------------------66 3.3 類神經網路之結果--------------------------------68 3.3.1 收斂性分析之結果--------------------------------68 3.3.2 彎曲強度之類神經網路模型結果--------------------------------69 3.3.3 骨切強度之類神經網路模型結果--------------------------------69 3.3.4 骨咬合強度之類神經網路模型結果--------------------------------70 3.4 珈瑪骨釘之最佳化結果--------------------------------70 3.4.1 最大值與最小值之結果--------------------------------70 3.4.2 單目標最佳化之結果--------------------------------71 3.4.3 三目標最佳化之結果--------------------------------74 第四章 討論--------------------------------75 第五章 結論與未來展望--------------------------------82 5.1 結論--------------------------------82 5.2 未來展望--------------------------------83 參考文獻--------------------------------84 作者簡介--------------------------------88

    [1]楊榮森,臨床骨折學,第273~288頁,台北,合記圖書出版社,民國七十八年。
    [2]Schipper I., "Unstable trochanteric femoral fractures: extramedullary or intramedullary fixation Review of literature," Injury, vol. 35, pp. 142-151 (2004).
    [3]Wang C. J., Brown C. J., Yettram A. L., and Procter P., "Intramedullary femoral nails: one or two lag screws? A preliminary study," Med. Eng. Phys., vol. 22, pp. 613-624 (2000).
    [4]Brown C. J., Wang C. J., Yettram A. L., and Procter P., "Intramedullary nails with two lag screws," Clinical Biomechanics, vol. 19, pp. 519-525 (2004).
    [5]Kawaguchi S., Sawada K., and Nabeta Y., "Cutting-out of the lag screw after internal fixation with the Asiatic gamma nail," Injury, vol. 29, pp. 47-53 (1998).
    [6]Sitthiseripratip K., Van Oosterwyck H., Vander Sloten J., Mahaisavariya B., Bohez E. L. J., Suwanprateeb J., Van Audekercke R., and Oris P., "Finite element study of trochanteric gamma nail for trochanteric fracture," Med. Eng. Phys., vol. 25, pp. 99-106 (2003).
    [7]Ingman A. M., "Percutaneous intramedullary fixation of trochanteric fractures of the femur: Clinical trial of a new hip nail," Injury, vol. 31, pp. 483-487 (2000).
    [8]Bojan A. J., Beimel C., Speitling A., Taglang G., Ekholm C., and Jonsson A., "3066 consecutive Gamma Nails. 12 years experience at a single centre," BMC Musculoskeletal Disorders, vol. 11, p. 133 (2010).
    [9]Kouvidis G. K., Sommers M. B., Giannoudis P. V., Katonis P. G., and Bottlang M., "Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation," J. Orthop. Surg. Res., vol. 4, p. 16 (2009).
    [10]Haynes R. C., Poll R. G., Miles A. W., and Weston R. B., "Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw," Injury, vol. 28, pp. 337-341 (1997).
    [11]Mereddy P., Kamath S., Ramakrishnan M., Malik H., and Donnachie N., "The AO/ASIF proximal femoral nail antirotation (PFNA): A new design for the treatment of unstable proximal femoral fractures☆," Injury, vol. 40, pp. 428-432 (2009).
    [12]Kubiak E. N., Bong M., Park S. S., Kummer F., Egol K., and Koval K. J., "Intramedullary fixation of unstable intertrochanteric hip fractures: One or two lag screws," J. Orthop. Trauma, vol. 18, pp. 12-17 (2004).
    [13]Lobo-Escolar A., Joven E., Iglesias D., and Herrera A., "Predictive factors for cutting-out in femoral intramedullary nailing," Injury, vol. 41, pp. 1312-1316 (2010).
    [14]Lin J., "Encouraging Results of Treating Femoral Trochanteric Fractures With Specially Designed Double-Screw Nails," The Journal of Trauma: Injury, Infection, and Critical Care, vol. 63, pp. 866-874 (2007).
    [15]Morihara T., Arai Y., Tokugawa S., Fujita S., Chatani K., and Kubo T., "Proximal femoral nail for treatment of trochanteric femoral fractures," Journal of orthopaedic surgery (Hong Kong), vol. 15, pp. 273-277 (2007).
    [16]許士昌,新編解剖學,第5-49~5-50頁、第5-12~5-13頁、第5-55頁,台灣,永大書局有限公司,民國九十八年。
    [17]劉華昌,骨折處理,第217~225頁、第229頁,台灣,合記圖書出版社,民國七十六年。
    [18]黃建智,「動態髖骨螺絲之生物力學分析」,碩士論文,國立台灣科技大學,台北 (2008)。
    [19]Zafiropoulos G. and Pratt D. J., "Fractured Gamma nail," Injury, vol. 25, pp. 331-336 (1994).
    [20]Gaebler C., Stanzl-Tschegg S., Tschegg E. K., Kukla C., Menth-Chiari W. A., Wozasek G. E., and Heinz T., "Implant failure of the gamma nail," Injury, vol. 30, pp. 91-99 (1999).
    [21]Sehat K., Baker R., Pattison G., Price R., Harries W., and Chesser T., "The use of the long gamma nail in proximal femoral fractures," Injury, vol. 36, pp. 1350-1354 (2005).
    [22]Paraschou S., Anastasopoulos H., Rossas H., Papapanos A., Alexopoulos J., and Karanikolas A., "Technical errors and complications of gamma nail and other cephalocondylic intramedullary nails in the treatment of pertrochanteric fractures: Prevention and treatment," Injury, vol. 40, pp. S11-S12 (2009).
    [23]Ehmke L., Fitzpatrick D., Krieg J., Madey S., and Bottlang M., "Lag screws for hip fracture fixation: Evaluation of migration resistance under simulated walking," J. Orthop. Res., vol. 23, pp. 1329-1335 (2005).
    [24]RAO S. S.,有限元素法─工程上之應用,台南,復文書局,民國七十八年。
    [25]Gallagher R. H.,有限元素法,台北,科技圖書股份有限公司,民國七十五年。
    [26]Hsu C.-C., Chao C.-K., Wang J.-L., and Lin J., "Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance," J. Orthop. Res., vol. 24, pp. 908-916 (2006).
    [27]Wang C. J., Yettram A. L., Yao M. S., and Procter P., "Finite element analysis of a Gamma nail within a fractured femur," Med. Eng. Phys., vol. 20, pp. 677-683 (1998).
    [28]鄭燕琴,田口品質工程技術理論與實務,第2-4頁,台北市,中華民國品質管制學會,民國八十二年。
    [29]葉怡成,類神經網路模式應用與實作,第1-2頁至1-6頁,台北市,儒林圖書有限公司,民國九十二年。
    [30]葉怡成,應用類神經網路,第1-2頁,台北市,儒林圖書有限公司,民國九十年。
    [31]Hernandez J., "Optimum operating conditions for heat and mass transfer in foodstuffs drying by means of neural network inverse," Food Control, vol. 20, pp. 435-438 (2009).
    [32]周鵬程,遺傳演算法原理與應用─活用Matlab,第1-3至1-11頁、第2-10至2-31頁,台北市,全華科技圖書股份有限公司,民國九十年。
    [33]林昇甫、徐永吉,遺傳演算法及其應用,第1頁、第6頁、第14~19頁,台北市,五南圖書出版股份有限公司,民國九十八年。
    [34]Sanjuan-Cervero R., Morales Suarez-Varela M., Sanchis-Sanegre J. R., and Fenollosa-Gomez J., "A Clinical Comparison between the GammaR and the ClaufittR Nails in Unstable Proximal Femoral Fractures," Revista Espanola de Cirugia Ortopedica y Traumatologia (English Edition), vol. 51, pp. 325-334.
    [35]Pollard J. D., Deyhim A., Rigby R. B., Dau N., King C., Fallat L. M., and Bir C., "Comparison of Pullout Strength between 3.5-mm Fully Threaded, Bicortical Screws and 4.0-mm Partially Threaded, Cancellous Screws in the Fixation of Medial Malleolar Fractures," The Journal of Foot and Ankle Surgery, vol. 49, pp. 248-252 (2010).

    QR CODE