簡易檢索 / 詳目顯示

研究生: 張瑋荃
Wei-cyuan Jhang
論文名稱: 超音波發射器之指向性圖樣建模與分析應用於揚聲器陣列配置
Ultrasonic Emitter Directivity Pattern Construction and Analysis for Loudspeaker Array Configuration
指導教授: 林敬舜
Ching-shun Lin
口試委員: 陳維美
Wei-mei Chen
林昌鴻
Chang-hong Lin
林淵翔
Yuan-hsiang Lin
王煥宗
Huan-chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 62
中文關鍵詞: 指向性圖樣聲場輻射聲場建模超音波陣列配置
外文關鍵詞: Directivity pattern, Acoustic radiation, Sound modeling, Loudspeaker array configuration
相關次數: 點閱:144下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將聲音聚焦於特定目標對象之聚光燈形式的聲場已發展多年。其中發射波束的基本概念是基於高頻聲音的高指向特性,將欲傳送的音訊透過載波傳遞,藉由一組超音波陣列便可發射出人耳無法感知的超音波束,在抵達私密聆聽區後經過空氣中的調變成可聽音。基於高頻定向的特性,可聽音可輕易地只傳遞給該區的聆聽者,而周遭的人卻無法感知。現今大多數的文獻資料都著重於聲音的調變技術來減少失真,卻較少探討聲學傳遞以及超音波輻射的現象。

    在本文中,將透過聲學模型建立超音波陣列的指向性圖樣。首先介紹聲學的理論,其中定義了波的傳遞與輻射現象,接著描述從發射器產生的波束在空氣中擴散的情況,模擬的結果將用於顯示指向性圖樣以及後續的量測。實驗量測將超音波發射器單體排列成陣列形式做為聲源,並紀錄產生的波束輻射。之後再將量測結果與模擬內容藉由指向性圖樣相互比較,驗證實驗模擬中的指向性與精確度。由結果可以得知增加效率的超音波陣列配置方式,並依據相關模擬所顯示的資訊提出改善建議。


    A spotlight-like sound field to the target audiences has been developed for years. The fundamental idea of sound beams is based on the high directivity of high-frequency sound, which is used as the carrier for delivering messages. The private listening zone could be created by projecting the inaudible ultrasound via a set of emitters. Based on this directional property, sound proximity can also be conveniently placed near the listener. Most of the literatures focus on the sound modulation techniques for reducing distortion, whereas place few emphasis on the study of acoustic transmission and radiation. In this work, we establish the directivity pattern of an ultrasound array by acoustic models. This acoustic transfer function is modeled for enhancing the directivity patterns, and then the radiation beam is generated for measuring and fitting. We try several emitter arrangements for improving the configuration efficiency and reducing the development cost. As a result, the radiation evaluation and numerical design are provided to verify the directivity and precision of the proposed system.

    摘要 Abstract 目錄 圖片索引 表索引 第一章 導論 1.1 前言 1.2 指向性聲源 1.2.1 高指向性超音波陣列的發展 1.2.2 高指向性超音波陣列的現況 1.3 本文架構 第二章 參數化揚聲器技術與聲學模型 2.1 參數化揚聲器技術架構 2.2 聲學模型系統 2.2.1 傅立葉轉換 2.2.2 漢克爾轉換 2.2.3 波動方程式 2.2.4 波的傳遞 2.2.5 波的輻射現象 第三章 指向性圖樣建模 3.1 厄瓦特球結構 3.2圓對稱性之建模 3.3 超音波發射器之指向性圖樣 第四章 實驗結果 4.1實驗設備 4.2量測方式與結果 4.3建模與擬合 第五章 結論與未來展望 5.1結論 5.2未來展望 參考文獻

    [1] R. Johannes, J. W. Beh, W. S. Gan, and E. L. Tan, “Investigation of 3D audio rendering with parametric array loudspeakers,” 128th Audio Engineering Society Convention, pp. 1–15, May 2010.
    [2] D. A. Silverman, “Spotlight of sound, ” Sound and Communications, vol. 55, no. 7, Jul. 2009.
    [3] P. J. Westervelt, “Parametric acoustic array,” J. Acoust. Soc. Amer., vol. 35, no. 4, pp. 535–537, Apr. 1963.
    [4] H. O. Berktay, “Possible exploitation of non-linear acoustics in underwater transmitting applications,” J. Sound Vib., vol. 2, no. 4, pp. 435–461, 1965.
    [5] M. B. Bennett and D. T. Blackstock, “Parametric array in air,” J. Acoust. Soc. Amer., vol. 57, no. 3, pp. 562–568, 1975.
    [6] M. Yoneyama and J. Fujimoto, “The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design,” J. Acoust. Soc. Amer., vol. 73, no. 5, pp. 1532–1536, 1983.
    [7] T. Kamakura, M. Yoneyama, and K. Ikegaya, “Development of a parametric loudspeaker for practical use,” 10th international symposium on nonlinear acoustics, pp. 147-150, 1984.
    [8] J. J. Kraws and K. B. Goldfarb, “Novel acoustic devices improve communication over long distances,” Crystal Research Associates, pp. 1-63, Feb. 2012.
    [9] Holosonic Research Labs, “Directional sound system,” Audio Spotlight Product Brochure, pp. 1-4, 2014.
    [10] C. Shi and W. Gan, “Development of parametric loudspeaker,” IEEE Potentials, vol. 29, no. 6, pp. 20-24, 2010.
    [11] A. D. Poularikas and R. C. Dorf, Transforms and Applications Handbook, 3rd ed. New York: CRC Press Inc., 2010, ch2.
    [12] E. Geddes and L. Lee, Audio Transducers. MI: Gedlee, 2002, ch. 3-4.
    [13] J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett, vol. 58, no. 15, pp. 1499–1501, Apr. 1987.
    [14] L. L. Beranek. Acoustics. New York: Amer. Inst. of Physics, 1996, ch. 1-7.
    [15] L. E. Kinsler, A. R. Frey, A. R. Coppens, J. V. Sanders. Fundamentals of Acoustics, 4th ed., New York: John Wiley & Sons, 2000.

    [16] W. Singer and K. Brenner, “Transition of the scalar field at a refracting surface in the generalized Kirchhoff diffraction theory,” J. Opt. Soc. Am. A, vol. 12, No. 9, pp. 1913-1919, Sep. 1995.
    [17] M. S. Ureda, “Line arrays: theory and applications,” 110th Audio Engineering Society Convention, pp. 1-12, May 2001.
    [18] H. J. M. Steeneken, and T. Houtgast, “A physical method for measuring speech-transmission quality,” J. Acoust. Soc. Amer., vol. 67, no.1, pp. 318-326, 1980.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE