簡易檢索 / 詳目顯示

研究生: 黃敏如
Min-Ru Huang
論文名稱: 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接 枝二氧化矽顆粒、反應性微膠顆粒、與矽烷接枝及高分子 接枝之氧化石墨烯及熱脫層氧化石墨烯對不飽和聚酯樹脂 之聚合固化反應動力、玻璃轉移溫度、及 X 光散射特性之 影響
Synthesis of nano-scale colloidal silica from elemental silicon by hydrolysis, and effects of silane-grafted silica nanoparticles, reactive microgel particles, and silane-grafted and polymergrafted graphene oxide and thermally reduced graphene oxide on the cure kinetics, glass transition temperatures, and X-ray scattering characteristics for unsaturated polyester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 229
中文關鍵詞: 反應性微膠顆粒二氧化矽奈米顆粒不飽和聚酯樹脂聚合固化反應動力微分掃描熱分析儀傅立葉紅外光分析儀氧化石墨烯熱脫層氧化石墨烯玻璃轉移溫度動態機械分析儀
外文關鍵詞: Reactive Microgels, Dynamic Light Scattering, Silica Nanoparticle, Unsaturated Polyester, Curing Kinetics; DSC, FTIR, Graphene Oxide, Thermally Reduced Graphene Oxide, Glass Transition
相關次數: 點閱:413下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用元素矽水解法合成無機二氧化矽奈米顆粒,並可以有效控制其顆粒大小,
本文亦探討另外六種特用添加劑,分別為(1)反應性微膠顆粒 (2)氧化石墨烯 (3)熱脫
層氧化石墨烯 (4)高分子接枝之熱脫層氧化石墨烯 (5)矽烷接枝之氧化石墨烯及(6)矽
烷接枝之二氧化矽,其對苯乙烯(St)/不飽和聚酯樹脂(UP)/特用添加劑三成份系統之聚
合固化反應動力、玻璃轉移溫度及 X 光散射特性之影響。
吾人利用動態光散射儀測量二氧化矽奈米顆粒的粒徑份布,以及由 X-ray 散射儀
鑑定 (1)氧化石墨烯 (2) 熱脫層氧化石墨烯 (3)高分子接枝之熱脫層氧化石墨烯 (4)
矽烷接枝之氧化石墨烯之微結構。
此外,亦使用差式掃描卡計(DSC)及傅立葉轉化紅外線光譜儀(FTIR)測量苯乙烯/
不飽和聚酯樹脂(UP)雙成份系統與苯乙烯/不飽和聚酯樹脂(UP)/特用添加劑之三成份
系統在聚合固化過程中的反應動力。最後根據 Takayanagi 機械模式,苯乙烯/不飽和
聚酯樹脂(UP)/特用添加劑聚合固化系統其在每一相區的玻璃轉移溫度,吾人亦使用
動態機械分析儀(DMA)測定之。


In this study, silica nanoparticles(SNP) with a diameter ranging from15 nm to 60 nm
were synthesized by size-controllable hydrolysis of elemental silicon. The effects of six other
additives, including (1) reactive microgel particles, (2)graphene oxide,(3)thermally reduced
graphene oxide, (4) polymer-grafted thermally reduced graphene oxide, (5) silane-grafted
graphene oxide, and (6) silane-grafted silica nanoparticles on the cure kinetics, glass
transition temperature and X-ray scattering characteristics for the styrene(St)/unsaturated
polyester resin(UP)/special additives ternary systems after the cure have also been
investigated.
The particle size distribution of silica nanoparticles was measured by dynamic light
scattering (DLS). Samples such as (1) graphene oxide, (2) thermally reduced graphene oxide,
(3) polymer-grafted thermally reduced graphene oxide, (4) silane-grafted graphene oxide,
and (5) the UP in dilute St/UP binary system were also characterized by X-ray scattering
methods (SAXS and WAXS).
Moreover, the reaction kinetics for the St/UP/special additive ternary system during the
cure was measured by differential scanning calorimetry (DSC) and Fourier transform
infrared spectroscopy (FTIR). The viscosity of the St/UP/special additive ternary system was
measured by using a falling ball viscometer. Finally, based on the Takayanagi mechanical
models, the glass transition temperature in each region of the cured samples for
St/UP/special additive ternary system has been measured by dynamic mechanical analysis
(DMA).

目錄 摘要........................................................................................................................................I Abstract................................................................................................................................. II 致謝.....................................................................................................................................III 目錄.....................................................................................................................................IV 圖目錄.............................................................................................................................. VIII 表目錄..............................................................................................................................XIX 第一章 緒論......................................................................................................................... 1 1-1 二氧化矽[1] ............................................................................................................... 1 1-2 不飽和聚酯樹脂 (UP Resin) .................................................................................. 2 1-3 增韌劑 (Toughener)................................................................................................ 3 1-4 抗體積收縮劑(Low-Profile Additives, LPA).......................................................... 5 1-5 石墨烯/高分子奈米複合材料[28,28a] ........................................................................ 6 1-6 研究範疇................................................................................................................ 12 第二章 文獻回顧............................................................................................................. 13 2-1 二氧化矽[1, 29-30] ..................................................................................................... 13 2-1-1 二氧化矽製備[1,31-33] ....................................................................................... 14 2-2 自由基聚合反應.................................................................................................... 16 2-3 不飽和聚酯樹脂(UP)合成 .................................................................................... 18 2-4 不飽和聚酯樹脂(UP)和苯乙烯(St)之交聯共聚合反應 ...................................... 19 2-5 苯乙烯/不飽和聚酯/抗收縮劑三成分系統之相容性研究.................................. 21 2-6 不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 ............................................ 22 2-7 不飽和聚酯(UP)樹脂之抗收縮補償機制 ............................................................ 23 2-8 不飽和聚酯樹脂之反應動力學模式之研究........................................................ 25 2-9 分子稀薄溶液之環動半徑研究............................................................................ 29 2-10 不飽和聚酯樹脂玻璃轉移溫度之研究.............................................................. 31 2-11 石墨烯/高分子奈米複合材料............................................................................. 32 2-12 氧化石墨(GO)及熱脫層氧化石墨(TRGO)的製備............................................ 33 2-13 蒙特納石黏土-不飽和聚酯高分子奈米複合材料研究..................................... 34 第三章 實驗方法與設備................................................................................................... 37 V 3-1 實驗原料.............................................................................................................. 37 3-1-1 二氧化矽顆粒(Silica, SiO2)............................................................................ 37 3-1-2 不飽和聚酯樹脂(UP Resin) ........................................................................... 38 3-1-3 反應性微膠顆粒(Reactive Microgel, RMs)................................................... 39 3-1-4 氧化石墨烯(Graphite Oxide, GO)與熱脫層氧化石墨烯(Thermally Reduced Graphite Oxide, TrGO) ................................................................................................ 39 3-1-5 矽烷接枝之氧化石墨烯(Silane-grafted Graphene Oxide, sg-GO)................ 40 3-1-6 高分子接枝之熱脫層氧化石墨烯(Polymer-grafted thermally reduced graphene oxide, TRGO-polymer) ................................................................................ 40 3-1-7 實驗藥品 ......................................................................................................... 42 3-2 實驗儀器................................................................................................................ 46 3-3 實驗步驟................................................................................................................ 49 3-3-1 元素矽水解法合成二氧化矽......................................................................... 49 3-3-2 活化二氧化矽顆粒......................................................................................... 51 3-3-3 未反應之 Silane-treated SiO2 製備................................................................. 52 3-3-4 反應之 Silane-treated SiO2 製備..................................................................... 52 3-3-5 St/UP(MA-PA-PG,AN=30)雙成份系統溶液製備......................................... 52 3-3-6 St/UP(MA-PA-PG,AN=30)/特用添加劑三成份系統溶液製備 ................... 53 3-3-7 蒙特納石黏土(MMT)之鈉活化處理[30] ......................................................... 53 3-3-8 Alkylammonium-MMT(AMMT)製備[81, 85, 102] .............................................. 53 3-3-9 落球式黏度計黏度測定................................................................................. 54 3-3-10 微分掃描卡計(DSC)反應動力測定............................................................. 55 3-3-11 動態機械分析儀(DMA)固化試片製作 ....................................................... 55 3-3-12 傅立葉紅外線光譜儀(FTIR)校正曲線測定................................................ 56 3-3-13 傅立葉紅外線光譜儀(FTIR)固態之樣品製備與測定................................ 57 3-3-14 傅立葉紅外線光譜儀(FTIR)反應動力測定................................................ 57 3-3-15 小角度 X-ray 散射儀(SAXS)測定環動半徑研究....................................... 58 3-4 性質測定與分析方法............................................................................................ 59 3-4-1 微分掃描卡計(DSC)熱分析........................................................................... 59 VI 3-4-2 動態機械分析儀(DMA)理論[94] ..................................................................... 60 3-4-3 傅立葉紅外線光譜儀(FTIR)測定反應動力之理論與分析.......................... 61 3-4-4 St/UP (MA-PA-PG, AN=30)system 反應動力分析 ..................................... 62 3-4-5 X-ray 散射儀之相關理論............................................................................... 65 3-4-6 利用 SAXS 測環動半徑 (Radius of gyration , Rg)........................................ 67 第四章 結果與討論......................................................................................................... 69 4-1 二氧化矽的合成及鑑定........................................................................................ 69 4-1-1 元素矽水解法合成膠體二氧化矽奈米顆粒................................................. 69 4-1-2 活化前後二氧化矽顆粒之 FTIR 鑑定 .......................................................... 75 4-2 MPS 型 Silane 改質 Silica 鑑定............................................................................ 83 4-2-1 FTIR 定量分析................................................................................................ 84 4-2-2 MPS Silane treated SiO2 接枝率..................................................................... 92 4-3 落球式黏度計測定黏度........................................................................................ 95 4-3-1 St/UP (MA-PA-PG 型)之雙成份系統............................................................ 95 4-3-2 St/UP(MA-PA-PG, AN=30) /氧化石墨烯(GO)之三成份系統..................... 96 4-3-3 St/UP(MA-PA-PG, AN=30) /熱脫層氧化石墨烯(TRGO)之三成份系統.... 98 4-4 廣角度 X 光散射法(WAXS)測定層間距........................................................... 100 4-4-1 石墨(Graphite)、氧化石墨烯(GO)及熱脫層氧化石墨烯(TRGO)粉體..... 101 4-5 DSC 反應動力 ..................................................................................................... 103 4-5-1 不同 St 對 UP 之 C=C 雙鍵莫耳比(MR)之 St/UP 雙成分系統................. 103 4-5-2 St/UP(MA-PA-PG, AN=30)/GO 三成分系統.............................................. 106 4-5-3 St/UP(MA-PA-PG, AN=30)/TRGO 三成分系統......................................... 110 4-5-4 St/UP(MA-PA-PG, AN=30)/反應性微膠顆粒(RMs)三成份系統.............. 113 4-5-5 St/UP(MA-PA-PG, AN=30)/MPS-Silane SiO2 三成份系統........................ 116 4-6 FTIR 校正曲線測定 ............................................................................................ 119 4-6-1 苯乙烯 ........................................................................................................... 120 4-6-2 MA-PA-PG(AN=30)型不飽和聚酯(UP)樹脂 ............................................. 124 4-6-3 MA-PA-PG(AN=20)型不飽和聚酯(UP)樹脂 ............................................. 128 4-6-4 MA-PG(AN=30)型不飽和聚酯(UP)樹脂.................................................... 132 VII 4-6-5 MA-PA-PG 型不飽和聚酯(UP)樹脂之反應性微膠顆粒........................... 136 4-6-6 MA-HD 型不飽和聚酯(UP)樹脂................................................................. 139 4-6-7 MA-HD 型不飽和聚酯(UP)樹脂之反應性微膠顆粒................................. 142 4-7 FTIR 測定反應動力 ............................................................................................ 145 4-7-1 St/UP(MA-PA-PG, AN=30)雙成份系統...................................................... 145 4-7-2 St/MA-PA-PG(AN=20)雙成份系統............................................................. 148 4-7-3 St/UP(MA-PA-PG, AN=30)/氧化石墨烯(GO)之三成份系統.................... 151 4-7-4 St/UP(MA-PA-PG, AN=30)/熱脫層氧化石墨烯(TRGO)之三成份系統... 165 4-8 DMA 測定玻璃轉移溫度.................................................................................... 179 4-8-1 Takayanagi 機械模式與以 DMA 所測各相區之玻璃轉移溫度 ............... 179 4-8-2 St/UP(MA-PA-PG, AN=30)/氧化石墨烯(GO)三成分系統........................ 180 第五章 結論................................................................................................................... 187 第六章 建議與未來工作............................................................................................... 191 第七章 附錄................................................................................................................... 193 7-1 DSC 反應動力 ..................................................................................................... 193 7-1-1 St/UP(MA-PA-PG, AN=20)/AMMT 三成分系統....................................... 193 7-2 FTIR 測定反應動力 ............................................................................................ 196 7-2-1 St/UP(MA-PA-PG, AN=20)/AMMT 之三成份系統................................... 196 第八章 參考文獻........................................................................................................... 202

1. R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface
properties, and biochemistry, Wiley, New York (1979).
2. R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982.
3. E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer
Science Part B: Polymer Physics , 31, 619(1993).
4. S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research, 33,
2778(1994).
5. The B.F. Goodriche Co, WO93/21274, Oct. 28(1993).
6. W.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
7. 吳嘉鴻, 碩士論文,台灣科技大學, 2003.
8. 黃俊翰, 碩士論文,台灣科技大學, 2009.
9. 戴孟祥, 碩士論文,台灣科技大學, 2010.
10. 陳曉蘭, 碩士論文,台灣科技大學, 2010.
11. 許毓倫, 碩士論文,台灣科技大學, 2011.
12. 葉冠良, 碩士論文,台灣科技大學, 2015.
13. E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970, 15, 113.
14. K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia,
Hanser Publishers, 1993. Ch4.
15. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
16. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975, 19, 3045.
17. L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991, 32, 1593.
18. Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
19. L. J. Lee, W. Li, and K.H. Hsu, Polymer, 2000, 41, 711.
20. C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991, 32, 636.
203
21. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003, 89,
3336.
22. J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005, 98, 264.
23. C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991, 31, 1450.
24. Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000, 78, 543.
25. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 323.
26. J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci., 2004,
91, 3388.
27. Y.J. Huang and W.C. Jiang, Polymer, 1998, 39, 6631.
28. H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecule,43, 6500(2010).
28a. K. Hu, D.D. Kulkarni, I. Choi, and V.V. Tsukruk, Prog. Polym. Sci., 39,1934(2014).
29. R. P. W. Scott, Silica Gel and Bonded Phases, Wiley, New York, 1993.
30. K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, T. Fukuda, Macromolecules , 38, 2137(2005).
31. J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui, Journal of Colloid and Interface Science ,
326, 138(2008).
32. W. Stober, A. Fink, E. Bohn, Journal of Colloid and Interface Science, 26, 62(1968).
33. 合成二氧化矽的特性與用途, 高分子工業,1998,78,P72-76.
34. 盧天智, 碩士論文,台灣科技大學, 1991.
35. H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice
Hall, Englewood Cliffs, 50(1990).
36. Y.S. Yang and L.J. Lee, Polymer, 29, 1793(1988).
37. K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 7, 2561(1969).
38. 江文慶, 碩士論文,台灣科技大學, 1996.
39. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 55, 305(1995).
40. Y.J. Huang and J.C. Horng, Polymer, 39, 3683(1998).
41. Y.J. Huang and L.D. Chen, Polymer, 39, 7049(1998).
204
42. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci.,55, 323(1995).
43. Y.J. Huang and C.C. Su, Polymer,35, 2397(1994).
44. 蘇進成, 碩士論文,台灣科技大學, 1992.
45. 林立翔, 碩士論文,台灣科技大學, 1992.
46. E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 15, 113(1970).
47. Y.J. Huang, T.S. Chen, J.G. Huang, F. H. Lee, Polym. Mater. Sci. Eng., 83, 493(2000).
48. M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187(1973).
49. S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937(1979).
50. C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749(1983).
51. J. F. Stevenson, Polym. Eng. Sci., 26(11), 746(1989).
52. J. F. Stevenson, SPE. ANTEC. Papers,26, 452(1980).
53. L. J. Lee, Polym. Eng. Sci., 21, 483(1981).
54. Y. J. Huang, and L. J. Lee, AIChE. J., 31, 1585(1985).
55. C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859(1987).
56. C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296(1985).
57. G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper,974(1987)
58. Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990).
59. K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 39, 2935(1998).
60. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford
University Press, New York, 2000. Ch5.
61. T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part
B: Polymer Physics, 35, 2913(1997).
62. J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley,
New York, 2011, P137.
63. W. D. Cook and O. Delaycki, J. Polym. Sci., Part B: Polym. Phys., 12, 2111(1974).
64. J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216(1993).
205
65. C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786(1991).
66. P. W. K. Lam, Polym. Eng. Sci., 29,609(1989).
67. H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441(2010).
68. H. Kim and C.W. Macosko, Macromolecules, 41, 3317(2008).
69. W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178(2012).
70. J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules,44,
2808(2011).
71. J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045(2012).
72. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules,42,
5251(2009).
73. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806(2008).
74. M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno,
Polymer, 52, 4664(2011).
75. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu,
S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558(2007).
76. W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339(1958).
77. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson,
R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110,
8535(2006).
78. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808(2009).
79. F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt,Macromolecules,45,
7083(2012).
80. 楊昌叡, 碩士論文,台灣科技大學, 2017.
81. X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 1998,
38, 1351.
82. D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 2000, 41, 8557.
206
83. R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun, A.
Chavira, and A. K. Thompsor, Polymer, 2002, 43, 3669.
84. The Dow Chemical Company US Patent 6, 287, 922 Sep.11, 2001.
85. A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 2005, 98, 767.
86. 梁繼文, 礦物學(下), 1984.
87. T. Lan and T.J Dinnavaia, Chem. Mater, 1994. 6, 2216.
88. 高慶霖, 碩士論文,台灣科技大學, 2020.
89. 周雅欣, 碩士論文,台灣科技大學, 2020.
90. 黃妍綾, 碩士論文,台灣科技大學, 2020.
91. K. Horie, I. Mita, and H. Kambe, J. Polym. Sci.:Part A1:Polymer Physics Edition, 1970,
8, 2839.
92. 吳晨瑜, 碩士論文,台灣科技大學, 2016.
93. 江昆達, 碩士論文,台灣科技大學, 2008.
94. S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York,
1993,P 321-337.
95. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford
University Press, New York, 2000. Ch5.
96. J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley,
New York, 2011, P137.
97. 林暐靜, 碩士論文,台灣科技大學, 2019.
98. Yuliana Tassia, 碩士論文,國立台灣科技大學, 2013.
99. 黃姵瑜, 碩士論文,台灣科技大學, 2017.
100. Y. J. Huang and J. S. Leu, Polymer, 1993, 34, 295.
101. K. H. Liao, S. Aoyama, A. A. Abdala, and C. Macosko, Macromolecules, 47,
8311(2014).
102. 劉伊姍, 碩士論文,台灣科技大學, 2013.

無法下載圖示 全文公開日期 2025/08/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE