簡易檢索 / 詳目顯示

研究生: 徐哲謙
Che-Chien Hsu
論文名稱: 基於自注入鎖定之非對稱式雙向無線光通訊之研究
Experimental study of SIL-based asymmetric bidirectional optical wireless communication
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
葉秉慧
Pinghui-Sophia Yeh
周錫熙
Hsi-Hsir Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 自注入鎖定無線光通訊
外文關鍵詞: Self-injection locking, optical wireless communication
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出了基於自注入鎖定架構之非對稱式雙向無線光通訊系統,此系統為了改善非對稱式雙向無線光通訊系統上行傳輸功率不足的問題,在系統端以自注入鎖定技術作為提升上行傳輸功率的方式,並使用空間光調變器作為動態繞射元件,使傳輸光束產生繞射角度,達到增加用戶端移動範圍的效果。而在用戶端方面更透過設計貓眼系統作為調變式復歸反射器,將上行光束接收並調變後以平行於入射光之路徑返回系統端做接收,可以免去用戶端準值系統的設置成本等問題,進而降低用戶端的體積與重量,增加系統的可攜帶性,達成無線光通訊中的雙向傳輸。從實驗之量測結果分析得知本論文所提之架構在使用C-band光源時可以達到線寬減小 0.08 nm、調變頻寬提升 9.82 GHz、側模抑制比為 26.58 dB、功率增益為 23 dB之效能。而鏈路速度在超過 1.5 Gbits / s的情況下進行上行與下行雙向鏈路數據傳輸,其品質因子皆超過12 dB。
此外本論文亦針對目前使用軌道角動量多工技術來增加上行通道傳輸容量之非對稱式雙向無線光通訊系統所可能面臨的通道衝突等問題提出一具有OAM交換功能之節點之設計來避免上行通道衝突的問題。透過本論文所提之設計不僅將能避免OAM通道衝突之問題產生並且亦能同時達成OAM通道交換之功能,預期將能成為未來實現非對稱式雙向無線光通訊系統不可或缺之關鍵性技術。


In this thesis, an asymmetric bidirectional optical wireless communication (B-OWC) based on the self-injection locking technique is proposed and experimentally studied. In order to improve the problem of insufficient uplink transmission power of the asymmetric B-OWC system, the self-injection locking technique was utilized at the access node (AN) to strengthen the power for uplink transmission. A liquid crystal spatial light modulator (LC-SLM) was also employed as a dynamic diffraction element to perform the beam steering functionality at the AN in order to improve the system coverage area. A cat's eye system was also designed to serve as a modulated retroreflector (MRR) at the terminal user (TU), where the incident beam is received, modulated, and reflected back to the AN via the path parallel to the incident beam, which will reduce the power consumptions, alignment difficulties, and cost of the TUs. In particular, the wavelength for uplink transmission and the modulation bandwidth used in each TU can be dynamically assigned by AN, which will simultaneously solve the problem of wavelength contentions and raise the efficiency of bandwidth utilization.
From the experimental measurement results, a linewidth reduction of 0.08 nm, a modulation bandwidth increments of 9.82 GHz, a side mode suppression ratio of 26.58 dB, a power gain of 23 dB have been achieved. Moreover, both uplink and downlink data transmission experiments with a link speed over 1.5 Gbits/s have also been experimental demonstrated successfully, with Quality factors (Q-factors) beyond 12 dB.
In addition, in this thesis we also proposed the use of orbital angular momentum multiplexing technique as a way to improve the transmission capacity of B-OWC, and we proposed a node with OAM channels switching function to solve the problem of OAM channel conflict. The design proposed in this thesis not only avoided the problem of OAM channel conflict, but also realized the function of OAM channel exchange at the same time, this design is expected to become an indispensable technology for realizing B-OWC in the future.

致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 序論 1 1.1前言 1 1.2 研究動機 1 1.3論文架構 2 第二章 文獻回顧 3 2.1對稱及非對稱式雙向光通訊系統介紹 3 2.2注入鎖定(Injection locking,IL)技術介紹 5 2.2.1注入鎖定技術發展 6 2.2.2注入鎖定之參數計算 7 2.2.3外部注入鎖定(External injection locking,EIL) 7 2.2.4自注入鎖定(Self-injection locking,SIL) 8 2.3自注入鎖定與外部注入鎖定技術之比較 8 2.4光纖連接自注入鎖定介紹 9 2.5自由空間之自注入鎖定介紹 11 2.6基於自注入鎖定之非對稱式雙向無線光通訊系統 18 2.6.1液晶空間光調變器(Spatial light modulator, SLM)設計 20 2.6.1貓眼系統(Cat’s eye system)設計 22 第三章 自注入鎖定之非對稱式雙向無線光通訊系統架構 25 3.1系統架構 25 3.2自注入鎖定架構模擬(使用光纖連接) 27 3.3系統實驗架構分析 32 3.4實驗架構功率損耗分析 33 3.4.1元件與功率損耗分析 33 3.4.2上行功率損耗分析 35 3.4.3下行功率損耗分析 37 第四章 自注入鎖定之非對稱式雙向無線光通訊系統數據傳輸性能之研究 40 4.1 自注入鎖定系統之效能分析 40 4.1.1自注入鎖定系統頻譜量測 41 4.1.2自注入鎖定系統線寬量測 42 4.1.3自注入鎖定系統調變頻寬量測 42 4.2自注入鎖定系統之功率分析 43 4.3自注入鎖定之非對稱式雙向光通訊系統訊號傳輸效能 44 4.3.1上行直線數據傳輸效能 44 4.3.2下行直線數據傳輸效能 49 4.4光束角度偏轉之傳輸效能 51 4.4.1光束偏轉最大角度之上行傳輸效能 52 4.4.2光束偏轉最小角度之上行傳輸效能 56 4.4.3光束偏轉最大角度之下行傳輸效能 59 4.4.4光束偏轉最小角度之下行傳輸效能 62 第五章 應用軌道角動量技術於非對稱式雙向無線光通訊系統 65 5.1 引言 65 5.2 軌道角動量(Orbital Angular Momentum, OAM)介紹 65 5.2.1 OAM生成介紹 66 5.2.2光均化器生成OAM系統 69 5.3 系統架構介紹 70 5.4 OAM交換系統介紹 71 5.4.1 多平面光轉換multi-plane light conversion(MPLC)介紹 73 5.4.2數位微鏡裝置(Digital micromirror device, DMD)介紹 75 5.5 多平面OAM交換系統 79 第六章 總結與未來發展 86 6.1 結果與討論 86 6.2 未來展望工作 86 文獻參考 87

[1] Alsemmeari, Rayan A., S. T. Bakhsh and Hani Alsemmeari. “Free Space Optics Vs Radio Frequency Wireless Communication.” International Journal of Information Technology and Computer Science 8 (2016): 1-8.
[2] 傳統自由空間光對稱式系統架構圖,檢自https://www.techplayon.com/free-air-fiber-googles-next-connectivity-unconnected(2017/12/6)
[3] C. Quintana et al., "High Speed Electro-Absorption Modulator for Long Range Retroreflective Free Space Optics," in IEEE Photonics Technology Letters, vol. 29, no. 9, pp. 707-710, 1 May1, 2017, doi: 10.1109/LPT.2017.2680842.
[4] H. L. Stover and W. H. Steier, “Locking of laser oscillators by light injection,” Appl. Phys. Lett., vol. 8, no. 4, pp. 91–93, Feb. 1966.
[5] C. Lin and F. Mengel, "Reduction of frequency chirping and dynamic linewidth in high-speed directly modulated semiconductor lasers by Injection locking," in Optical Fiber Communication, 1985 OSA Technical Digest Series (Optical Society of America, 1985), paper TUQ1.
[6] Shenping Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang and I. Bennion, "Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio," in IEEE Photonics Technology Letters, vol. 12, no. 11, pp. 1441-1443, Nov. 2000, doi: 10.1109/68.887644.
[7] A. Murakami, K. Kawashima and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," in IEEE Journal of Quantum Electronics, vol. 39, no. 10, pp. 1196-1204, Oct. 2003, doi: 10.1109/JQE.2003.817583.
[8] C. Yeh, C. Chow, C. Wang, F. Shih, Y. Wu, and S. Chi, "Using four wavelength-multiplexed self-seeding Fabry-Perot lasers for 10 Gbps upstream traffic in TDM-PON," Opt. Express 16, 18857-18862 (2008).
[9] M. H. M. Shamim et al., "Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication," in IEEE Photonics Journal, vol. 10, no. 4, pp. 1-11, Aug. 2018, Art no. 7905611, doi: 10.1109/JPHOT.2018.2849884.
[10] E. K. Lau, L. J. Wong and M. C. Wu, "Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 618-633, May-june 2009, doi: 10.1109/JSTQE.2009.2014779.
[11] C. Yeh, F. Shih, C. Wang, C. Chow, and S. Chi, "Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode," Opt. Express 16, 435-439 (2008).
[12] M. Shamim, T. Ng, B. Ooi, and M. Khan, "Tunable self-injection locked green laser diode," Opt. Lett. 43, 4931-4934 (2018).
[13] M. H. M. Shamim et al., "Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication," in IEEE Photonics Journal, vol. 10, no. 4, pp. 1-11, Aug. 2018, Art no. 7905611, doi: 10.1109/JPHOT.2018.2849884.
[14] Liang, W., Ilchenko, V., Eliyahu, D. et al. Ultralow noise miniature external cavity semiconductor laser. Nat Commun 6, 7371 (2015). https://doi.org/10.1038/ncomms8371
[15] D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, vol. 1. Hoboken, NJ, USA: Wiley, 2005, p. 356.
[16] H. -H. Chou and W. -T. Huang, "Wavelength Tunable Asymmetric B-OWC System Based on Self-Injection Locking for TDM-PONs," in IEEE Photonics Technology Letters, vol. 33, no. 7, pp. 370-372, 1 April1, 2021, doi: 10.1109/LPT.2021.3064650.
[17] https://etheses.lib.ntust.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0M10702345%22.&searchmode=basic
[18] 閃耀式光柵(Blazed grating)介紹檢自https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9026
[19] 貓眼系統(Cat’s eye system)介紹檢自https://hdl.handle.net/11296/6ufq4v(2020/07/31)
[20] Rabinovich, W. & Mahon, R. & Goetz, Peter & Swingen, L. & Murphy, J. & Ferraro, M. & Burris, R. & Suite, M. & Moore, C. & Gilbreath, Gcharmaine & Binari, S.. (2006). 45 Mbps cat's eye modulating retro-reflector link over 7 Km. Proceedings of SPIE - The International Society for Optical Engineering. 6304. 10.1117/12.688407.
[21] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, "Optical communications using orbital angular momentum beams," Adv. Opt. Photon. 7, 66-106 (2015)
[22] Joshua Baghdady, Keith Miller, Kaitlyn Morgan, Matthew Byrd, Sean Osler, Robert Ragusa, Wenzhe Li, Brandon M. Cochenour, and Eric G. Johnson, "Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing," Opt. Express 24, 9794-9805 (2016)
[23] Marrucci, L., Karimi, E., Slussarenko, S., Piccirillo, B., Santamato, E., Nagali, E., & Sciarrino, F. (2011). Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics, 13, 064001.
[24] Hsi-Hsir Chou and Kang-Yun Liu, "Asymmetrical bidirectional VLC based on beam homogenizer OAM generation technology," Opt. Lett. 46, 5381-5384 (2021).
[25] Y. Yue et al., "Reconfigurable orbital-angular-momentum-based switching among multiple 100-Gbit/s data channels," 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, pp. 1-3.
[26] X. Xiao, Y. Li, D. Zheng, X. Zeng, W. Li and J. Wu, "Programmable orbital angular momentum(OAM) mode multiplexer based on multi-plane light conversion(MPLC)," 2018 Asia Communications and Photonics Conference (ACP), 2018, pp. 1-3, doi: 10.1109/ACP.2018.8596088.
[27] 數位微鏡裝置(Digital micromirror device, DMD)介紹檢自https://e2e.ti.com/blogs_/b/enlightened/posts/the-pioneering-work-that-led-to-the-dmd
[28] P. D. Colbourne, S. McLaughlin, C. Murley, S. Gaudet, and D. Burke, "Contentionless Twin 8x24 WSS with Low Insertion Loss," in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2018)
[29] Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki and T. Takahashi, "8 × 24 wavelength selective switch for low-loss transponder aggregator," 2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015, pp. 1-3.
[30] https://etheses.lib.ntust.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0M10702314%22.&searchmode=basic

無法下載圖示 全文公開日期 2032/02/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE