簡易檢索 / 詳目顯示

研究生: 陳傑富
Jie-Fu Chen
論文名稱: 使用黏性阻尼器於晶圓廠之耐震補強設計
Applications of Viscous Dampers to Seismic Retrofit of Fab Structure
指導教授: 黃震興
Jenn-shin Hwang
口試委員: 蔡克銓
none
張國鎮
none
黃世建
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 152
中文關鍵詞: 速度型黏性阻尼器高科技產業非古典阻尼
外文關鍵詞: viscous dampers
相關次數: 點閱:414下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以半導體及TFT LCD光電產業為首的高科技產業乃我國經濟上極為重要之產業,由九二一地震﹙1999年﹚及三三一地震﹙2002年﹚經驗中,新竹地區震度並不大,然而竹科業者卻蒙受巨大之半成品(work in process)、設備及營運中斷(business interruption)等損失,就耐震力而言,只要200gal以上的振動加速度,即可能導致設備無法修復的損壞,若能使用有效的防震措施,以減少地震能量之輸入,必能減少高科技產業因地震所造成的損失。
    有鑑於此,本研究考慮利用非古典阻尼的觀念,推導速度型黏性阻尼器應用於高科技廠房之減震設計,以降低其結構及非結構之地震加速度及位移反應,並進行動力分析驗證該設計公式之正確性,以擬訂出一套可行的補強設計或新結構設計方法。


    The semiconductor and TFT LCD industries are two of the most important industries in Taiwan. The seismic vulnerability of the factories observed during the 1999 Taiwan Chi-Chi earthquake and the 2000 Taiwan 331 earthquake has raised the attention to the seismic retrofit of these factories. Based on the past experiences, the industries have been bothered by the loss of work-in-process and the business interruption due to small earthquakes. This is because a great amount of vibration-sensitive equipment may shut down automatically during small earthquake excitations. Furthermore, it is believed that major loss may result when the peak ground acceleration at the site exceeds 0.2g.

    Based on the aforementioned need, it is proposed in this study to use viscous dampers to seismically retrofit the semiconductor factories. However, due to the difficulties of the construction in the clean room, it is proposed that the dampers to be installed in between the shell structure and the exterior structure of the factory such that the operation of the factory may be least interfered by the construction considering the micro-vibration and cleanness issues of the clean room. Corresponding to this retrofit method, the structure with the viscous dampers is modeled using non-classical damping theory to derive the design formulas of viscous dampers, while the classical damping theory is considered to be inappropriate in this application. The proposed design formulas are validated by a few numerical simulations.

    第一章 緒論.......................................................................................................1 1.1研究背景..................................................................................................1 1.1.1高科技廠房結構型式....................................................................1 1.1.2高科技廠房之非結構及設備........................................................3 1.2研究目的..................................................................................................4 1.3研究重點與內容......................................................................................4 第二章 液態黏性阻尼器之介紹與力學特性...................................................6 2.1前言..........................................................................................................6 2.2液態黏性阻尼器之構造及力學特性......................................................6 2.3含液態黏性阻尼器結構之等效阻尼比..................................................8 2.3.1線性黏性阻尼器之等效阻尼比.....................................................8 2.3.2非線性黏性阻尼器之等效阻尼比................................................11 2.4液態黏性阻尼器之設計.........................................................................13 2.4.1線性黏性阻尼器之設計......................................................................13 2.4.2非線性黏性阻尼器之設計..................................................................15 2.5含液態黏性阻尼器構架之靜力分析方法.............................................17 第三章 黏性阻尼器應用於晶圓廠耐震補強之設計理論.............................20 3.1補強設計構想.........................................................................................20 3.2設計理論推導.........................................................................................20 3.2.1以阻尼器聯繫之兩單自由度系統阻尼比推導...........................20 3.2.1.1考慮古典阻尼求解-模態分析............................................21 3.2.1.2考慮非古典阻尼求解-狀態空間法....................................22 3.2.1.3 狀態空間法應用於以阻尼器聯繫之兩單自由度系統....25 3.2.2 系統整體阻尼比討論.................................................................26 3.2.3 線性黏性阻尼器對系統阻尼比之貢獻.....................................29 3.2.4 非線性黏性阻尼器對系統阻尼比之貢獻.................................29 3.2.5 位移設計法.................................................................................29 3.3 阻尼器設計公式驗證...........................................................................30 3.3.1 SAP2000N對黏性阻尼器之模擬...............................................30 3.3.2 線性黏性系統阻尼比之識別.....................................................31 3.3.3 自由振動-線性黏性阻尼器設計公式驗證................................32 3.3.4 地震力反應-線性與非線性阻尼器設計公式驗證....................34 3.3.4.1 線性阻尼器設計公式驗證................................................34 3.3.4.2 非線性阻尼器設計公式驗證............................................34 第四章 實尺寸動態分析探討...........................................................................36 4.1分析構架模型.........................................................................................36 4.2模態分析.................................................................................................36 4.3線性黏性阻尼器設計............................................................................37 4.4自由振動-線性黏性系統阻尼比識別...................................................39 4.5地震力反應-線性阻尼器設計公式驗證...............................................39 第五章 結論.....................................................................................................41 參考文獻.............................................................................................................42 表目錄 表3.1設定系統阻尼比為10%及15%時,線性及非線性阻尼器阻尼常數.....44 表3.2結構a設定系統阻尼比為10%及15%時,El Centro、TCU048及TCU071地震歷時最大值比較.........................................................................................45 表3.3結構b設定系統阻尼比為10%及15%時,El Centro、TCU048及TCU071地震歷時最大值比較.........................................................................................46 表4.1實尺寸晶圓廠分析構架模型各桿件尺寸及樓版尺寸...........................47 圖目錄 圖1.1標準型之晶圓廠.......................................................................................48 圖1.2雙層型之晶圓廠.......................................................................................48 圖1.3多層型之TFT-LCD廠..............................................................................49 圖1.4半導體製程示意圖...................................................................................50 圖1.5垂直式氧化系統示意圖...........................................................................50 圖1.6垂直爐管構造圖.......................................................................................51 圖1.7 921地震垂直式爐管石英管破壞情形....................................................51 圖2.2線性與非線性阻尼器之力與速度關係...................................................53 圖2.3線性與非線性黏性阻尼器之力與位移遲滯迴圈...................................53 圖2.4黏性與黏彈性阻尼器力與位移之遲至迴圈...........................................53 圖2.5承受正弦運動下之單自由度系統...........................................................54 圖2.6彈性應變能( ) 及 阻尼器消散之能量 ( ) 示意圖........................54 圖2.7非線性阻尼器之設計流程.......................................................................55 圖2.8含黏性阻尼器結構之力與位移關係.......................................................56 圖2.9含黏性阻尼器結構於諧和震動下位移與速度之相位示意圖...............56 圖3.1高科技廠房補強設計構想圖...................................................................57 圖3.2晶圓廠阻尼器裝置之簡化理論分析模型...............................................58 圖3.3 = =2%, =1, =1~6,複合阻尼比 與頻率比 關係圖..........59 圖3.4 = =2%, =2, =1~6,複合阻尼比 與頻率比 關係圖..........60 圖3.5 = =2%, =3, =1~6,複合阻尼比 與頻率比 關係圖..........61 圖3.6 = =2%, =4, =1~6,複合阻尼比 與頻率比 關係圖..........62 圖3.7 = =2%, =5, =1~6,複合阻尼比 與頻率比 關係圖. ..63 圖3.8 = =2%, =6, =1~6,複合阻尼比 與頻率比 關係圖....64 圖3.9 = =5%, =1, =1~6,複合阻尼比 與頻率比 關係圖....65 圖3.10 = =5%, =2, =1~6,複合阻尼比 與頻率比 關係圖........66 圖3.11 = =5%, =3, =1~6,複合阻尼比 與頻率比 關係圖........67 圖3.12 = =5%, =4, =1~6,複合阻尼比 與頻率比 關係圖........68 圖3.13 = =5%, =5, =1~6,複合阻尼比 與頻率比 關係圖........69 圖3.14 = =5%, =6, =1~6,複合阻尼比 與頻率比 關係圖........70 圖3.15 = =2%, =1, =1~6,複合阻尼比 與頻率比 關係圖.......71 圖3.16 = =2%, =2, =1~6,複合阻尼比 與頻率比 關係圖.......72 圖3.17 = =2%, =3, =1~6,複合阻尼比 與頻率比 關係圖.......73 圖3.18 = =2%, =4, =1~6,複合阻尼比 與頻率比 關係圖.......74 圖3.19 = =2%, =5, =1~6,複合阻尼比 與頻率比 關係圖.......75 圖3.20 = =2%, =6, =1~6,複合阻尼比 與頻率比 關係圖.......76 圖3.21 = =5%, =1, =1~6,複合阻尼比 與頻率比 關係圖.......77 圖3.22 = =5%, =2, =1~6,複合阻尼比 與頻率比 關係圖.......78 圖3.23 = =5%, =3, =1~6,複合阻尼比 與頻率比 關係圖.......79 圖3.24 = =5%, =4, =1~6,複合阻尼比 與頻率比 關係圖.......80 圖3.25 = =5%, =5, =1~6,複合阻尼比 與頻率比 關係圖.......81 圖3.26 = =5%, =6, =1~6,複合阻尼比 與頻率比 關係圖.......82 圖3.27 = =2%, =1, =1~6,相角差 與頻率比 關係圖.....83 圖3.28 = =2%, =2, =1~6,相角差 與頻率比 關係圖.....84 圖3.29 = =2%, =3, =1~6,相角差 與頻率比 關係圖.....85 圖3.30 = =2%, =4, =1~6,相角差 與頻率比 關係圖.....86 圖3.31 = =2%, =5, =1~6,相角差 與頻率比 關係圖.....87 圖3.32 = =2%, =6, =1~6,相角差 與頻率比 關係圖.....88 圖3.33 = =5%, =1, =1~6,相角差 與頻率比 關係圖.....89 圖3.34 = =5%, =2, =1~6,相角差 與頻率比 關係圖.....90 圖3.35 = =5%, =3, =1~6,相角差 與頻率比 關係圖.....91 圖3.36 = =5%, =4, =1~6,相角差 與頻率比 關係圖.....92 圖3.37 = =5%, =5, =1~6,相角差 與頻率比 關係圖.....93 圖3.38 = =5%, =6, =1~6,相角差 與頻率比 關係圖.....94 圖3.39 = =2%,中間段帶寬的範圍與 、 之關係圖.......................95 圖3.40 = =5%,中間段帶寬的範圍與 、 之關係圖.......................95 圖3.41 Nonlinear element “Damper” available in SAP2000N...........................96 圖3.42地表加速度脈衝.....................................................................................96 圖3.43系統阻尼比10%,系統自由振動之位移反應.....................................97 圖3.44系統阻尼比15%,系統自由振動之位移反應.....................................98 圖3.45地震資料El Centro之加速度歷時、加速度反應譜與位移反應譜 ..99 圖3.46地震資料TCU048之加速度歷時、加速度反應譜與位移反應譜.. 100 圖3.47地震資料TCU071之加速度歷時、加速度反應譜與位移反應譜.. 101 圖3.48系統阻尼10%在El Centro地震下a結構加速度歷時反應 ............102 圖3.49系統阻尼10%在El Centro地震下b結構加速度歷時反應 ............103 圖3.50系統阻尼10%在El Centro地震下a結構位移歷時反應................104 圖3.51系統阻尼10%在El Centro地震下b結構位移歷時反應................105 圖3.52系統阻尼10%在TCU048地震下a結構加速度歷時反應.................106 圖3.53系統阻尼10%在TCU048地震下b結構加速度歷時反應.................107 圖3.54系統阻尼10%在TCU048地震下a結構位移歷時反應..................108 圖3.55系統阻尼10%在TCU048地震下b結構位移歷時反應..................109 圖3.56系統阻尼10%在TCU071地震下a結構加速度歷時反應..............110 圖3.57系統阻尼10%在TCU071地震下b結構加速度歷時反應..............111 圖3.58系統阻尼10%在TCU071地震下a結構位移歷時反應..................112 圖3.59系統阻尼10%在TCU071地震下b結構位移歷時反應..................113 圖3.60系統阻尼15%在El Centro地震下a結構加速度歷時反應.............114 圖3.61系統阻尼15%在El Centro地震下b結構加速度歷時反應.............115 圖3.62系統阻尼15%在El Centro地震下a結構位移歷時反應.................116 圖3.63系統阻尼15%在El Centro地震下b結構位移歷時反應.................117 圖3.64系統阻尼15%在TCU048地震下a結構加速度歷時反應..............118 圖3.65系統阻尼15%在TCU048地震下b結構加速度歷時反應..............119 圖3.66 系統阻尼15%在TCU048地震下a結構位移歷時反應..................120 圖3.67系統阻尼15%在TCU048地震下b結構位移歷時反應..................121 圖3.68系統阻尼15%在TCU071地震下a結構加速度歷時反應 .............122 圖3.69系統阻尼15%在TCU071地震下b結構加速度歷時反應............. 123 圖3.70系統阻尼15%在TCU071地震下a結構位移歷時反應................. 124 圖3.71系統阻尼15%在TCU071地震下b結構位移歷時反應................. 125 圖3.72設計系統阻尼10%與未加裝阻尼器內含阻尼比2%在El Centro地震下b結構位移歷時反應比較圖........................................................................126 圖3.73設計系統阻尼10%與未加裝阻尼器內含阻尼比2%在TCU048地震下b結構位移歷時反應比較圖........................................................................127 圖3.74設計系統阻尼10%與未加裝阻尼器內含阻尼比2%在TCU071地震下b結構位移歷時反應比較圖........................................................................128 圖3.75設計系統阻尼15%與未加裝阻尼器內含阻尼比5%在El Centro地震下b結構位移歷時反應比較圖........................................................................129 圖3.76設計系統阻尼15%與未加裝阻尼器內含阻尼比5%在TCU048地震下b結構位移歷時反應比較圖........................................................................130 圖3.77設計系統阻尼15%與未加裝阻尼器內含阻尼比5%在TCU071地震下b結構位移歷時反應比較圖........................................................................131 圖4.1分析構架模型示意圖(X方向)..............................................................132 圖4.2分析構架模型示意圖(Y方向)..............................................................133 圖4.3地表加速度脈衝.....................................................................................134 圖4.4系統阻尼比10%,系統自由振動之位移反應.....................................135 圖4.5系統阻尼比15%,系統自由振動之位移反應.....................................136 圖4.6系統阻尼比10%,在El Centro地震下結構加速度歷時反應 ..........137 圖4.7系統阻尼比10%,在El Centro地震下結構位移歷時反應...................138 圖4.8系統阻尼比15%,在El Centro地震下結構加速度歷時反應 ..........139 圖4.9系統阻尼比15%,在El Centro地震下結構位移歷時反應...............140 圖4.10系統阻尼比10%,在TCU048地震下結構加速度歷時反應 ..........141 圖4.11系統阻尼比10%,在TCU048地震下結構位移歷時反應 ..............142 圖4.12系統阻尼比15%,在TCU048地震下結構加速度歷時反應 ..........143 圖4.13系統阻尼比15%,在TCU048地震下結構位移歷時反應..............144 圖4.14未耐震補強與耐震補強後內部結構最大樓層位移比較圖...............145 圖4.15未耐震補強與耐震補強後內部結構最大樓層位移比較圖...............146 圖4.16未耐震補強與耐震補強後內部結構最大樓層加速度比較圖 ..........147 圖4.17未耐震補強與耐震補強後內部結構最大樓層加速度比較圖 ..........148 圖4.18未耐震補強與耐震補強後內部結構最大樓層剪力比較圖...............149 圖4.19未耐震補強與耐震補強後內部結構最大樓層剪力比較圖...............150 圖4.20設計系統阻尼10%與未加裝阻尼器內含阻尼比2%外部結構位移歷時反應比較圖...................................................................................................151 圖4.21設計系統阻尼15%與未加裝阻尼器內含阻尼比5%外部結構位移歷時反應比較圖...................................................................................................152

    【1】 張勁燕,半導體製程設備,五南圖書出版股份有限公司,2002.
    【2】 Constantinou, M.C. and Symans, M.D., (1992), Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers, Report No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, New York.
    【3】 Soong, T.T., and Constantinou, M.C., (1994), Passive and Active Structural Vibration Control in Civil Engineering, Springer-Verlag, New York.
    【4】 FEMA, (2000), NEHRP Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 356, November, Washington, D.C.
    【5】 FEMA, (1997), NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, October, Washington, D.C.
    【6】 Chopra, Anil K., (1995), Dynamics of Structures, Prentice-Hall, New Jersey.
    【7】 Seleemah, A.A., and Constantinou, M.C., (1997), Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers, Report No. NCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York.
    【8】 黃震興、黃尹男,“使用線性黏性阻尼器建築結構之耐震試驗與分析”,國家地震工程研究中心報告NCREE-01-022,2001。
    【9】 黃震興、黃尹男、洪雅惠,“含非線性黏性阻尼器結構之減震試驗與分析”,國家地震工程研究中心報告NCREE-02-020,2002。
    【10】 建築物耐震規範及解說,內政部,2005年7月。
    【11】 NEHRP Recommended Previous for Seismic Regulation for New Buildings and Other Structures, Part 1:Previous (FEMA 368), Building Seismic Safety Council, National Institute of Building Sciences, Washington, D.C. 2000.
    【12】 NEHRP Recommended Previous for Seismic Regulation for New Buildings and Other Structures, Part 2:Commentary (FEMA 369), Building Seismic Safety Council, National Institute of Building Sciences, Washington, D.C. 2000
    【13】 Hwang, J. S.”Composite damping ratio of seismically isolated regular bridges,” Engineering Structure, Vol .19 . NO . 1.pp. 55-62,1997
    【14】 Anestis S. Veletsos and Carlos E. Ventura ”Modal Anlysis of non-classically damped linear systems” earthquake engineer and structure dynamics. VOL.14, 217-243,1986
    【15】 鍾立來“結構主動控制之狀態空間系統”,結構工程 第八卷 第二期 民國八十二年六月,第89~98頁。
    【16】 SAP2000 Analysis Reference Volume 1, (1996), Computers and Structures, Inc., Berkeley, California.

    QR CODE