簡易檢索 / 詳目顯示

研究生: 鄭皓宇
Hao-Yu Cheng
論文名稱: 外扶壁對開挖變形控制機制之探討與應用
Investigation and Application of Deformation Control Mechanism for Deep Excavations with Outer Buttress Walls
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pio-Go Hsieh
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 245
中文關鍵詞: 深開挖外扶壁連續壁變形組合勁度剛性擋土系統
外文關鍵詞: Deep excavation, Outer buttress wall, Wall deflection, Combined Stiffness, Rigid support system
相關次數: 點閱:244下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於深開挖工程案例中,可能因為開挖基地大、地界線距開挖基地尚有一段距離、需要較寬廣之施工空間以及扶壁需作為永久結構物等原因,在開挖設計上會設置外扶壁,但對於外扶壁之研究卻相當缺少。因此,本研究首先針對二個座落於台北盆地且設置外扶壁之深開挖案例,進行三向度有限元素法之數值模擬分析及比較驗證,以瞭解設置外扶壁對開挖引致變位之影響,並探討設置外扶壁對於減少最大壁體變位與地表沉陷之成效。為了要更加掌握外扶壁抑制開挖引致變形之特性,本研究建立假設案例進行一系列參數研究,以瞭解不同影響因子對於外扶壁減少開挖引致變形之效率,並探討外扶壁變形控制之主要機制。
根據研究結果顯示,外扶壁變形控制之主要機制為連續壁與扶壁結合的組合勁度,故設置外扶壁以提高組合勁度除了可抑制開挖引致之變形外,亦可提高壁體勁度,使壁體變形趨向剛性變形。因此,本研究挑選出影響外扶壁抑制壁體變位與地表沉陷較明顯之參數因子,進行藉由設置外扶壁達剛性擋土系統之參數研究,提出外扶壁平面配置之關係式作為外扶壁配置之設計方法,並以兩個支撐開挖工法案例及三個無支撐開挖工法案例驗證其適用性,供實務上使用。


In deep excavation projects, the use of outer buttress walls is often necessary due to factors such as the large size of the excavation site, significant distance from property boundaries, the need for a wide construction space, and the requirement for permanent structures. However, research on outer buttress walls is currently lacking. Therefore, to clarify the effect of outer buttress walls on the movements of excavations and investigate the effectiveness of outer buttress walls in reducing maximum wall deflections and ground surface settlements, two deep excavation cases with outer buttress walls in the Taipei Basin are used to simulate and compare by using three-dimensional finite element method.
To better understand the characteristics of outer buttress walls in reducing excavation-induced deformations, this study establishes hypothetical cases for a series of parameter studies. The objective is to examine the efficiency of various influencing factors in reducing deformations induced by excavation and to investigate the main deformation control mechanism for outer buttress walls.
The research findings indicate that the main deformation control mechanism for outer buttress walls is the combined stiffness of wall and buttress walls. Therefore, the installation of outer buttress walls not only helps reduce deformations caused by excavation but also enhances the stiffness of the wall, leading to a more rigid deformation. Based on these results, this study identifies the key parameters that significantly affect the ability of outer buttress walls in reducing wall deflections and ground surface settlements. A design method for the configuration of outer buttress walls to achieve a rigid retaining system is proposed. A relational equation for the layout of outer buttress walls is developed and validated through two supported excavation cases and three strut-free excavation cases, aiming to provide practical application.

摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 IX 圖目錄 XI 符號索引 XVIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與內容 2 第二章 文獻回顧 5 2.1 前言 5 2.2 深開挖工程施工工法 5 2.2.1 支撐開挖工法 5 2.2.2 無支撐開挖工法 6 2.3 開挖引致之變形特性 8 2.3.1 壁體變形 8 2.3.2 地表沉陷 11 2.4 扶壁工法 16 2.4.1 扶壁型式與施工方式 16 2.4.2 扶壁變形控制機制與應用 18 2.5 小結 31 第三章 外扶壁案例三向度模擬驗證與成效探討 33 3.1 前言 33 3.2 材料組成律與分析模式 33 3.2.1 土壤組成律模式 33 3.2.2 分析模式類型 39 3.2.3 土壤與結構間界面元素 40 3.3 案例一:台北國際金融中心(台北101) 41 3.3.1 工程概況 41 3.3.2 地質狀況與水文條件 45 3.3.3 監測系統概況 51 3.3.4 分析之土壤參數 51 3.3.5 分析之結構參數 57 3.3.6 施工步驟模擬 59 3.3.7 分析網格建立 59 3.3.8 分析結果與比較 63 3.4 案例二:忠泰商場 79 3.4.1 工程概況 79 3.4.2 地質狀況與水文條件 81 3.4.3 監測系統概況 84 3.4.4 分析之土壤參數 84 3.4.5 分析之結構參數 85 3.4.6 施工步驟模擬 89 3.4.7 分析網格建立 91 3.4.8 分析結果與比較 92 3.5 小結 106 第四章 外扶壁變形控制機制探討與參數研究 107 4.1 前言 107 4.2 假設案例與參數設定 107 4.2.1 基本假設案例之設定 107 4.2.2 網格建立及施工步驟模擬 109 4.2.3 參數研究之規劃 109 4.2.4 量化方法 112 4.2.4.1 MDR、DAR與MSR 112 4.2.4.2 壁體剛性變形與柔性變形之區分 112 4.3 矩形外扶壁變形控制機制 113 4.4 矩形外扶壁之參數研究 114 4.4.1 外扶壁長度與間距之影響 114 4.4.2 外扶壁厚度之影響 129 4.4.3 開挖尺寸與開挖深度之影響 132 4.4.4 外扶壁深度之影響 150 4.5 T形外扶壁變形控制機制 155 4.6 T形外扶壁之參數研究 158 4.6.1 腹版與翼版長度之影響 158 4.6.2 外扶壁形狀之影響 169 4.7 綜合討論 174 4.8 小結 177 第五章 外扶壁配置之分析設計 179 5.1 前言 179 5.2 藉由設置外扶壁達剛性擋土系統 179 5.2.1 研究方法 179 5.2.2 參數研究之規劃 180 5.2.3 外扶壁於支撐工法之平面配置分析設計 181 5.2.4 案例驗證 186 5.3 外扶壁於無支撐開挖之應用 191 5.3.1 外扶壁於無支撐工法之平面配置分析設計 191 5.3.2 無支撐假設案例之設定 199 5.3.3 網格建立與施工步驟模擬 201 5.3.4 分析結果 202 5.4 綜合討論與小結 205 第六章 結論與建議 208 6.1 結論 208 6.2 建議 210 參考文獻 211 附錄A 217 附錄B 219

三聯科技股份有限公司。臺北國際金融中心基礎安全監測工程總結報告。
中華民國內政部營建署 (2021)。混凝土結構設計規範。
永濬營造工程有限公司。忠泰大直商場新建工程-矩形壁樁施工計畫書。
何明錦 (2003)。臺北101大樓結構工程規劃設計紀錄。內政部建築研究所。
何明錦 (2004)。台北101大樓結構工程施工監造紀錄。內政部建築研究所。
何樹根、李銘欽 (2020)。汐止臺灣科學園區無支撐開挖施工案例介紹。地工技術,第164期,第39-48頁。
吳國翔 (2020)。汐止區深開挖之案例研究。碩士論文,國立台灣科技大學營建工程研究所。
李宇軒 (2022)。小應變彈塑性模式於深開挖分析之研究。碩士論文,國立台灣科技大學營建工程研究所。
林亦郎 (2010)。地中壁對黏土層開挖變形影響之研究。博士論文,國立台灣科技大學營建工程研究所。
徐明志、黃心泉、張登貴、詹絢存、俞清瀚 (2016)。二維分析程式在深開挖工程應用之探討~以PLAXIS程式為例。地工技術,第149期,第35-46頁。
徐明志、黃心泉、張盈智、吳宗翰、李銘欽 (2020)。鄰捷運設施之加勁式連續壁無支撐開挖案例。地工技術,第164期,第49-60頁。
莊孟翰、周忠仁、蘇鼎鈞、王劍虹 (2002)。軟弱地盤32公尺深開挖案例探討。地工技術第17次研討會,台北。
張圻、魏世玉、郭林、林宜甄、周家瓊 (2020)。無支撐開挖案例-遠東通訊數位園區TPKE大樓新建工程。第18屆大地工程學術研討會,屏東。
鄒瑞卿 (2002)。台北都會區超高層建築深開挖角隅效應及潛變形為之數值分析。碩士論文,國立成功大學土木工程研究所。
富國技術工程股份有限公司 (1998)。台北國際金融大樓開發案補充地質調查及大地工程分析報告書(上冊)。
富國技術工程股份有限公司 (1997)。台北國際金融大樓開發案補充地質調查及大地工程分析報告書(下冊)。
富國技術工程股份有限公司 (2021)。忠泰商場新建工程安全觀測工作總報告。
富國技術工程股份有限公司 (2012)。台北市中山區金泰段124等3筆地號基地土壤地質調查分析報告書。
塏固工程有限公司 (2019)。台北市中山區金泰段16-1地號地基調查報告書。
廖瑞堂 (1996)。逆打深開挖之行為研究。博士論文,國立台灣科技大學營建工程研究所。
鄧文賓 (2013)。扶壁對深開挖壁體變形影響之研究。碩士論文,國立台灣科技大學營建工程研究所。
鄧建剛 (1985)。有限元素法於臺北市支撐開挖工程之應用研究。碩士論文,國立臺灣工業技術學院營建工程技術系,台北。
歐章煜 (2021)。進階深開挖工程分析與設計(二版)。科技圖書。
歐章煜、Aswin Lim (2020)。無支撐開挖工法的發展與原理。地工技術,第164期,第7-14頁。
謝旭昇、呂芳熾 (1999)。淺論扶壁式連續壁之分析與設計。地工技術,第76期,第39-50頁。
ACI Committee 318 (1995). Building code requirements for structural concrete (ACI318-95) and commentary (ACI 318R-95). American Concrete Institute (ACI), Farmington Hills.
Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., and Cochran, J. J. (2013)。統計學(三版)(陳可杰、黃聯海、李婉怡譯)。新加坡商聖智學習。
Benz, T. (2007). Small-Strain Stiffness of Soils and its Numerical Consequences. PhD. thesis, University of Stuttgart.
Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Fonseca, F., Monoj, N. R., Zampich, L., and Zalamea, N. (2022). PLAXIS Material Models Manual.
Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65-78.
Clough, G. W. and O’Rourke, T. D. (1990). Construction induced movements of insitu walls. Design and Performance of Earth Retaining Structures, ASCE Special Publication, 25, 439-470.
Calvello, M. and Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 31(5), 410–424.
Chuah, S. S. and Tan, S. A. (2010). Numerical study on a new strut-free counterfort embedded wall in Singapore. Earth Retention Conference ASCE, 740-747.
Chen, S. L., Ho, C. T., Li, C. D., and Gui, M. W. (2011). Efficiency of buttress walls in deep excavations. Journal of GeoEngineering, 6(3), 145–156.
Fang, Y. S. and Ishibashi, I. (1986). Static earth pressures with various wall movements. Journal of Geotechnical Engineering, ASCE, 112(3), 317-333.
G. Modoni, A. Flora, L. Q. Anh Dan, C. Mancuso, J. Koseki, K. Balakrishnaier, and F. Tatsuoka (1999). A simple experimental procedure for the complete characterization of small strain stiffness of gravels. In M.Jamiolkowski, R. Lancellotta, and D.C.F. Lo Presti, editors, Pre-Failure Deformation Characteristics of Geomaterials, 123-130.
Hsieh, P. G. and Ou, C. Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35(6), 1004–1017.
Hsieh, P. G. and Ou, C. Y. (2018). Mechanism of buttress walls in restraining the wall deflection caused by deep excavation. Tunnelling and Underground Space Technology, 82, 542–553.
Hsieh, P. G., Ou, C. Y., and Hsieh, W. H. (2016). Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall. Acta Geotechnica, 11(5), 1087–1102.
Hsieh, H. S., Wu, L. H., Lin, T. M., Cherng, J. C., and Hsu, W. T. (2011). Performance of T-shape diaphragm wall in a large scale excavation. Journal of GeoEngineering, 6(3), 135-144.
Hwang, R. N. Moh, Z. C., and Wang, C. H. (2007). Performance of wall systems during excavation for core pacific city. Journal of GeoEngineering, 2(2), 53–61.
Hwang, R. N. and Moh, Z. C. (2008). Evaluating effectiveness of buttresses and cross walls by reference envelopes. Journal of GeoEngineering, 3(1), 1–11.
Khoiri, M. and Ou, C. Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47, 57–67.
Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., and Balasubramaniam, A. (2013). Small strain stiffness and stiffness degradation curve of Bangkok Clays. Soils and Foundations, 53(4), 498–509.
Lim, A., Ou, C. Y., and Hsieh, P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9-20.
Lim, A., Hsieh, P. G., and Ou, C. Y. (2016). Evaluation of buttress wall shapes to limit movements induced by deep excavation. Computers and Geotechnics, 78, 155–170.
Lim, A., Ou, C. Y., and Hsieh, P. G. (2018). Investigation of the integrated retaining system to limit deformations induced by deep excavation. Acta Geotechnica, 13(4), 973–995.
Lim, A., Ou, C. Y., and Hsieh, P. G. (2019). An innovative earth retaining supported system for deep excavation. Computers and Geotechnics, 114.
Lim, A., Ou, C. Y., and Hsieh, P. G. (2020). A novel strut-free retaining wall system for deep excavation in soft clay: numerical study. Acta Geotechnica, 15(6), 1557–1576.
Lim, A. and Ou, C. Y. (2018). Performance and Three-Dimensional Analyses of a Wide Excavation in Soft Soil with Strut-Free Retaining System. International Journal of Geomechanics, 18(9).
Lin, D. G. and Woo, S. M. (2005). Geotechnical analyses of Taipei International Financial Center (Taipei 101) construction project. 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 1513-1516.
Lin, D. G. and Woo, S. M. (2007). Three Dimensional analyses of deep excavation in Taipei 101 construction project. Journal of GeoEngineering, 2(1), 29-41.
Mana, A. I. and Clough, G. W. (1981). Prediction of movements for braced cut in clay. Journal of Geotechnical Engineering Division, ASCE, 107(6), 759-777.
Masuda, T., Einstein, H. H., & Mitachi, T. (1994). Prediction of lateral deflection of diaphragm wall in deep excavations. Journal of Geotechnical Engineering, No.505, III-29, 19-29.
Ou, C. Y. and Lai, C. H. (1994), Finite-element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal, 31, 204-214.
Ou, C. Y. and Hsieh, P. G. (2011). A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Computers and Geotechnics, 38(8), 987–997.
Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993). Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal, 30, 758-767.
Ou, C. Y., Liao, J. T., and Lin, H. D. (1998). Performance of diaphragm wall constructed using top-down method. ASCE, 124, 798–808.
Ou, C. Y., Lin, Y. L., and Hsieh, P. G. (2006). Case record of an excavation with cross walls and buttress walls. Journal of GeoEngineering, 1(2), 79-86.
Ou, C. Y., Teng, F. C., Seed, R. B., & Wang, I. W. (2008). Using buttress walls to reduce excavation-induced movements. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 161(4), 209–222.
Ou, C. Y., Chiou, D. C., and Wu, T. S. (1996). Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, ASCE, 122(5), 337-345.
Peck, R. B. (1969). Deep Excavation and Tunneling in Soft Ground. Proceeding of the 7th International Conference on soil Mechanics and Foundation Engineering, Mexico City, State-of-the-Art Report, 225-290.
Riley, W. F. and Sturges, L. D. (2000)。應用力學:動力學(杜鳳棋、王鴻烈譯)。高立圖書。
Sherif, M. A., Fang, Y. S., and Sherif, R. I. (1984). KA and K0 behind rotating and non-yielding walls. Journal of Geotechnical Engineering, ASCE, 110(1), 41-56.
Schanz, T. and Vermeer, P.A. (1998). Pre-failure deformation behaviour of geomaterials: On the stiffness of sands. Géotechnique, 48, 383–387.
Schanz, T., Vermeer, P. A., &Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In R.B.J. Brinkgreve, Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam. 281-290.
Santos, J.A. and Correia, A.G. (2001). Reference threshold shear strain of soil. its application to obtain a unique strain-dependent shear modulus curve for soil. In Proceedings 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, 1, 267–270.
Teng, F. C., Ou, C. Y., and Hsieh, P. G. (2014). Measurements and Numerical Simulations of Inherent Stiffness Anisotropy in Soft Taipei Clay. Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 237–250.
Yeh, T. Y., Ou, C. Y., and Lim, A. (2022). A case study of strut-free excavation retaining system. Acta Geotechnica, 17(12), 5557–5571.

QR CODE