簡易檢索 / 詳目顯示

研究生: 莊鎮維
Chen-Wei Chuang
論文名稱: 預編碼應用於三種廣義分頻多工系統之研究
Research on Precoding Applications in Three Types of Generalized Frequency Division Multiplexing Systems
指導教授: 張立中
Li-Chung Chang
口試委員: 陳永芳
Yung-Fang Chen
曾恕銘
Shu-ming Tseng
劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 88
中文關鍵詞: 廣義分頻多工預編碼峰均值功率比頻外溢出複雜度
外文關鍵詞: GFDM, Precoding, PAPR, OOB, Complexity
相關次數: 點閱:200下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代行動通訊(the 5th Generation of mobile communication system, 5G),廣泛運用了正交分頻多工技術(Orthogonal Frequency Division Multiplexing, OFDM),在OFDM中,子載波之間是正交的,這使得OFDM在主要傳輸頻帶內有高頻譜效率。然而,這種正交性在邊緣子載波處會變差,導致邊緣子載波的能量在主要傳輸頻帶以外泄漏,造成頻外溢出(Out-of-Band, OOB),因此廣義分頻多工(Generalized Frequency Division Multiplexing, GFDM)被提出來克服OFDM中高OOB的影響,但由於廣義分頻多工系統中所使用的原型濾波器會產生自干擾,其中包含子符元間干擾(Inter-symbol Interference, ISI)和子載波間干擾(Inter-Carrier-Interference, ICI),導致位元錯誤率(Bit error rate, BER)比正交分頻多工技術來的差。
    在本篇論文中,我們將幾種預編碼技術進行修改,並且將其應用在不同廣義分頻多工系統上,並討論對於不同修改方法的BER、峰均值功率比(Peak-to-Average Power Ratio, PAPR)、功率頻譜密度(power spectral density, PSD),以及複雜度。


    In the 5th Generation of mobile communication system, 5G, Orthogonal Frequency Division Multiplexing (OFDM) is widely used. In OFDM, the subcarriers are orthogonal to each other, which allows for high spectral efficiency within the main transmission band. However, the orthogonality becomes degraded at the edge subcarriers, leading to energy leakage of the edge subcarriers outside the main transmission band, resulting in Out-of-Band (OOB) emissions. To overcome the high OOB impact in OFDM, Generalized Frequency Division Multiplexing (GFDM) has been proposed. However, GFDM systems using prototype filters can introduce self-interference, including Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI), leading to a higher Bit Error Rate (BER) compared to OFDM.

    In this paper, we modify several precoding techniques and apply them to different GFDM systems. We discuss the BER, Peak-to-Average Power Ratio (PAPR), Power Spectral Density (PSD), and complexity of different modification methods.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文貢獻 2 1.3 章節概要 2 第2章 文獻回顧與系統架構介紹 3 2.1 三種廣義分頻多工系統 3 2.1.1 廣義分頻多工(GFDM)傳送端架構 3 2.1.2 廣義分頻多工(GFDM)接收端架構 6 2.1.3 濾波器介紹 8 2.1.4 Eigendecomposition-Based GFDM 9 2.1.5 GFDM Dual Filter 11 2.1.6 通道模型 13 2.2 預編碼技術 15 2.2.1 二階段式預編碼(TWO-STAGE PRECODING GFDM) 15 2.2.2 加權分數階傅立葉變換預編碼(4-WFRFT PRECODING) 19 第3章 提出的系統架構與複雜度 22 3.1 修正型二階段式預編碼應用於廣義分頻多工系統(Modified P1P2 Precoding) 22 3.2 修正型4-WFRFT預編碼應用於廣義分頻多工系統(Modified 4-WFRFT Precoding) 23 3.3 4-WFRFT 預編碼結合兩種廣義分頻多工系統 24 3.4 4-WFRFT預編碼結合修正型二階段式預編碼應用於廣義分頻多工系統 27 3.5 各種預編碼應用於三種2X2與4X4廣義分頻多工系統 28 3.6 系統複雜度比較 30 第4章 模擬結果與討論 34 4.1 三種廣義分頻多工系統之效能分析 34 4.1.1 不同通道下的BER效能 35 4.1.2 PAPR效能 46 4.1.3 PSD效能 49 4.2 三種廣義分頻多工在2X2系統下的BER效能 50 4.2.1 AWGN通道 50 4.2.2 FSC通道 53 4.2.3 EVA通道 56 4.2.4 ETU通道 58 4.3 三種廣義分頻多工在4X4系統下的BER效能 61 4.3.1 AWGN通道 62 4.3.2 FSC通道 64 4.3.3 EVA通道 66 4.3.4 ETU通道 69 第5章 結論與未來研究方向 72 參考文獻 73

    [1] J. Jeong, Y. Park, S. Weon, J. Kim, S. Choi and D. Hong, "Eigendecomposition-Based GFDM for Interference-Free Data Transmission and Pilot Insertion for Channel Estimation," in IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6931-6943, Oct. 2018, doi: 10.1109/TWC.2018.2864995.
    [2] F. Li, K. Zheng, L. Zhao, H. Zhao and Y. Li, "Design and Performance of a Novel Interference-Free GFDM Transceiver With Dual Filter," in IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4695-4706, May 2019, doi: 10.1109/TVT.2019.2902561.
    [3] F. Li, K. Zheng, H. Long and D. Guan, "Performance Analysis of Complementary GFDM in IoT Communications," 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1-5, doi: 10.1109/VTCSpring.2019.8746646.
    [4] M. Towliat and S. M. J. Asgari Tabatabaee, "GFDM Interference Mitigation Without Noise Enhancement," in IEEE Communications Letters, vol. 22, no. 5, pp. 1042-1045, May 2018, doi: 10.1109/LCOMM.2018.2813393.
    [5] A. Sikri and K. V. Srinivas, "Precoding for generalized frequency division multiplexing with linear receivers," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 2017, pp. 1-5, doi: 10.1109/PIMRC.2017.8292697.
    [6] L. Mei, X. -j. Sha and N. -t. Zhang, "The approach to carrier scheme convergence based on 4-weighted fractional fourier transform," in IEEE Communications Letters, vol. 14, no. 6, pp. 503-505, June 2010, doi: 10.1109/LCOMM.2010.06.092413.H.
    [7] Z. Wang, L. Mei, X. Wang and N. Zhang, "WFRFT precoding for generalized frequency division multiplexing," 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016, pp. 1-6, doi: 10.1109/WCNC.2016.7564950.
    [8] N. Michailow et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045-3061, 2014.
    [9] M. Towliat, S. M. J. A. Tabatabaee and M. Rajabzadeh, "A Simple ML Detection for Coded Generalized Frequency Division Multiplexing in MIMO Channels," in IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 798-807, 1 Feb.1, 2019, doi: 10.1109/TSP.2018.2885485.
    [10] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Relay radio transmission and reception, document TS 36.116. v11.4.0, 3GPP, 2015.
    [11] Hsuan-Fu Wang, Fang-Biau Ueng and Yun-Hsuan Sung, “Low-Complexity MU-MIMO-GFDM Joint Receivers,” International Journal of Electronics, accepted to be published, March 2022. (SCI、EI)
    [12] 10-725/36-725: Convex Optimization Fall 2015 Lecture 19: November 5 Lecturer: Ryan Tibshirani Scribes: Bohan Li, Donghan Yu, Ge Huang

    QR CODE