簡易檢索 / 詳目顯示

研究生: 蔡昕璇
Hsin-Hsuan Tsai
論文名稱: 多醣功能化脫層二硫化鎢奈米片用於含有機染料水的物理化學處理
Polysaccharide-functionalized exfoliated tungsten disulfide nanosheets for the physical-chemical treatment of organic dye-containing water
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
陳建光
Jem-Kun Chen
邱智瑋
Chih-Wei Chiu
李宗憲
Tsung-Xian Lee
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 180
中文關鍵詞: 二維材料複合材料功能性高分子醣類二硫化鎢光催化
外文關鍵詞: two-dimensional material, composite material, functional polymer, carbohydrate, tungsten disulfide, photocatalytic
相關次數: 點閱:395下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract III 致謝 V 目錄 VI 第一章 緒論 1 第二章 文獻回顧 5 第三章 實驗材料與方法 40 第四章 結果與討論 65 第五章 結論 143 第六章 未來展望 144 參考文獻 145

[1] Mohammed, M., A. Shitu, and A. Ibrahim, Removal of methylene blue using low cost adsorbent: a review. Res. J. Chem. Sci. ISSN, 2014. 2231: p. 606X.
[2] Odjegba, V. and N. Bamgbose, Toxicity assessment of treated effluents from a textile industry in Lagos, Nigeria. African Journal of Environmental Science and Technology, 2012. 6(11): p. 438-445.
[3] Mathur, N., P. Bhatnagar, and H. Verma, Genotoxicity of vegetables irrigated by industrial wastewater. Journal of Environmental Sciences, 2006. 18(5): p. 964-968.
[4] Jawad, A.H., A.S. Abdulhameed, and M.S. Mastuli, Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 2020. 14(1): p. 305-313.
[5] She, X., H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, and H. Li, Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. Journal of Materials Chemistry A, 2014. 2(8): p. 2563-2570.
[6] Coleman, J.N., M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, and R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571.
[7] Badwan, A., A. Abumalooh, E. Sallam, A. Abukalaf, and O. Jawan, A sustained release drug delivery system using calcium alginate beads. Drug Development and Industrial Pharmacy, 1985. 11(2-3): p. 239-256.
[8] Pang, X., X. Zhuang, Z. Tang, and X. Chen, Polylactic acid (PLA): research, development and industrialization. Biotechnology Journal, 2010. 5(11): p. 1125-1136.
[9] Dang, J.M. and K.W. Leong, Natural polymers for gene delivery and tissue engineering. Advanced Drug Delivery Reviews, 2006. 58(4): p. 487-499.
[10] Wiercigroch, E., E. Szafraniec, K. Czamara, M.Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek, Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 185: p. 317-335.
[11] Kothari, D., D. Das, S. Patel, and A. Goyal, Dextran and food application. Polysaccharides, 2014. 2014: p. 1-16.
[12] Monchois, V., A. Reverte, M. Remaud-Simeon, P. Monsan, and R.-M. Willemot, Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Applied and Environmental Microbiology, 1998. 64(5): p. 1644-1649.
[13] Monchois, V., M. Remaud-Simeon, R. Russell, P. Monsan, and R.-M. Willemot, Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Applied Microbiology and Biotechnology, 1997. 48: p. 465-472.
[14] Winslow, R.M., Clinical indications for blood substitutes and optimal properties. 2006: Elsevier London.
[15] Sun, G. and J.J. Mao, Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine, 2012. 7(11): p. 1771-1784.
[16] MODIG, J., Effectiveness of dextran 70 versus Ringer's acetate in traumatic shock and adult respiratory distress syndrome. Critical Care Medicine, 1986. 14(5): p. 454-457.
[17] Tassa, C., S.Y. Shaw, and R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 2011. 44(10): p. 842-852.
[18] Liu, P., J.-Q. Situ, W.-S. Li, C.-L. Shan, J. You, H. Yuan, F.-Q. Hu, and Y.-Z. Du, High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(4): p. 855-866.
[19] Lv, W., J. Xu, X. Wang, X. Li, Q. Xu, and H. Xin, Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS nano, 2018. 12(6): p. 5417-5426.
[20] Yu, H., Y. Zhang, X. Sun, J. Liu, and H. Zhang, Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes. Chemical Engineering Journal, 2014. 237: p. 322-328.
[21] Navascuez, M., R. Gracia, M. Marradi, N. Díaz, J. Rodríguez, I. Loinaz, F. López-Gállego, J. Llop, and D. Dupin, Interfacial activity of modified dextran polysaccharide to produce enzyme-responsive oil-in-water nanoemulsions. Chemical Communications, 2021. 57(37): p. 4540-4543.
[22] Liu, G., R. Hong, L. Guo, Y. Li, and H. Li, Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles. Applied Surface Science, 2011. 257(15): p. 6711-6717.
[23] Ambrosetti, E., M. Conti, A.I. Teixeira, and S.D. Zilio, Patterned carboxymethyl-dextran functionalized surfaces using organic mixed monolayers for biosensing applications. ACS Applied Bio Materials, 2022. 5(7): p. 3310-3319.
[24] Novoselov, K.S., A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
[25] Bonaccorso, F., L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015. 347(6217): p. 1246501.
[26] Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
[27] Radisavljevic, B., A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
[28] Lee, C., X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
[29] Ataca, C., H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
[30] Xiao, Y., M. Zhou, J. Liu, J. Xu, and L. Fu, Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater, 2019. 62(6): p. 759-775.
[31] Yang, H., S.W. Kim, M. Chhowalla, and Y.H. Lee, Structural and quantum-state phase transitions in van der Waals layered materials. Nature Physics, 2017. 13(10): p. 931-937.
[32] Heising, J. and M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. Journal of the American Chemical Society, 1999. 121(50): p. 11720-11732.
[33] Jiang, T., H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu, and S. Wu, Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotechnology, 2014. 9(10): p. 825-829.
[34] Kadantsev, E.S. and P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Communications, 2012. 152(10): p. 909-913.
[35] Ellis, J.K., M.J. Lucero, and G.E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Applied Physics Letters, 2011. 99(26).
[36] Toh, R.J., Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
[37] Cheng, L., J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, and H. Xing, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual‐modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 2014. 26(12): p. 1886-1893.
[38] Guo, H., C. Lan, Z. Zhou, P. Sun, D. Wei, and C. Li, Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale, 2017. 9(19): p. 6246-6253.
[39] Dong, C., J. Ji, B. Shen, M. Xing, and J. Zhang, Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr (VI) and remediation of phenol. Environmental Science & Technology, 2018. 52(19): p. 11297-11308.
[40] Chen, Y., Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, and H. Zhang, Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chemical Reviews, 2018. 118(13): p. 6409-6455.
[41] Ambrosi, A., Z. Sofer, and M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small, 2015. 11(5): p. 605-612.
[42] Lee, D., B. Lee, K.H. Park, H.J. Ryu, S. Jeon, and S.H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Letters, 2015. 15(2): p. 1238-1244.
[43] Baly, E.C.C., I.M. Heilbron, and W.F. Barker, CX.—photocatalysis. part I. the synthesis of formaldehyde and carbohydrates from carbon dioxide and water. Journal of the Chemical Society, Transactions, 1921. 119: p. 1025-1035.
[44] Zhu, M., X. Liu, L. Tan, Z. Cui, Y. Liang, Z. Li, K.W.K. Yeung, and S. Wu, Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. Journal of Hazardous Materials, 2020. 383: p. 121122.
[45] Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
[46] Juine, R.N., B.K. Sahu, and A. Das, Recyclable ZnS QDs as an efficient photocatalyst for dye degradation under the UV and visible light. New Journal of Chemistry, 2021. 45(13): p. 5845-5854.
[47] Holme, I., Sir William Henry Perkin: a review of his life, work and legacy. Coloration Technology, 2006. 122(5): p. 235-251.
[48] Wright, R.O., W.J. Lewander, and A.D. Woolf, Methemoglobinemia: etiology, pharmacology, and clinical management. Annals of Emergency Medicine, 1999. 34(5): p. 646-656.
[49] Tardivo, J.P., A. Del Giglio, C.S. De Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, D. Severino, R. de Fátima Turchiello, and M.S. Baptista, Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2005. 2(3): p. 175-191.
[50] Khan, I., K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, and L.A. Shah, Review on methylene blue: its properties, uses, toxicity and photodegradation. Water, 2022. 14(2): p. 242.
[51] Patel, R.I., A. Sharma, S. Sharma, and A. Sharma, Visible light-mediated applications of methylene blue in organic synthesis. Organic Chemistry Frontiers, 2021. 8(7): p. 1694-1718.
[52] Kannan, N. and M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 2001. 51(1): p. 25-40.
[53] Guo, Y., S. Yang, W. Fu, J. Qi, R. Li, Z. Wang, and H. Xu, Adsorption of malachite green on micro-and mesoporous rice husk-based active carbon. Dyes and Pigments, 2003. 56(3): p. 219-229.
[54] Amini, M., M. Arami, N.M. Mahmoodi, and A. Akbari, Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination, 2011. 267(1): p. 107-113.
[55] Tijani, J.O., O.O. Fatoba, G. Madzivire, and L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water, Air, & Soil Pollution, 2014. 225: p. 1-30.
[56] Sato, M., T. Tokutake, T. Ohshima, and A.T. Sugiarto, Aqueous phenol decomposition by pulsed discharges on the water surface. IEEE Transactions on Industry Applications, 2008. 44(5): p. 1397-1402.
[57] Du, P., A. Bueno-Lopez, M. Verbaas, A. Almeida, M. Makkee, J. Moulijn, and G. Mul, The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis, 2008. 260(1): p. 75-80.
[58] Chen, X., Z. Wu, D. Liu, and Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 2017. 12: p. 1-10.
[59] Renault, F., B. Sancey, P.-M. Badot, and G. Crini, Chitosan for coagulation/flocculation processes–an eco-friendly approach. European Polymer Journal, 2009. 45(5): p. 1337-1348.
[60] Ndabigengesere, A., K.S. Narasiah, and B.G. Talbot, Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 1995. 29(2): p. 703-710.
[61] Abadulla, E., T. Tzanov, S. Costa, K.-H. Robra, A. Cavaco-Paulo, and G.M. Gübitz, Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 2000. 66(8): p. 3357-3362.
[62] Balan, D.S. and R.T. Monteiro, Decolorization of textile indigo dye by ligninolytic fungi. Journal of Biotechnology, 2001. 89(2-3): p. 141-145.
[63] El-Sheekh, M.M., M. Gharieb, and G. Abou-El-Souod, Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration & Biodegradation, 2009. 63(6): p. 699-704.
[64] Acuner, E. and F. Dilek, Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochemistry, 2004. 39(5): p. 623-631.
[65] Hoffmann, M.R., S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995. 95(1): p. 69-96.
[66] Rauf, M. and S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 2009. 151(1-3): p. 10-18.
[67] Ajmal, A., I. Majeed, R.N. Malik, H. Idriss, and M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Advances, 2014. 4(70): p. 37003-37026.
[68] Sang, Y., Z. Zhao, M. Zhao, P. Hao, Y. Leng, and H. Liu, From uv to near‐infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Advanced Materials, 2015. 27(2): p. 363-369.
[69] Kansal, S., M. Singh, and D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 2007. 141(3): p. 581-590.
[70] Collazzo, G.C., E.L. Foletto, S.L. Jahn, and M.A. Villetti, Degradation of direct black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. Journal of Environmental Management, 2012. 98: p. 107-111.
[71] Gorjian, S. and H. Ebadi, Chapter 1-introduction. Photovoltaic Solar Energy Conversion, 2020: p. 1-26.
[72] Dawood, S. and T. Sen, Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 2014. 1(104): p. 1-11.
[73] Shi, Y., Q. Chang, T. Zhang, G. Song, Y. Sun, and G. Ding, A review on selective dye adsorption by different mechanisms. Journal of Environmental Chemical Engineering, 2022: p. 108639.
[74] Al-Ghouti, M., M. Khraisheh, S. Allen, and M. Ahmad, The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 2003. 69(3): p. 229-238.
[75] Michel, E.C., V. Montaño-Machado, P. Chevallier, A. Labbé-Barrère, D. Letourneur, and D. Mantovani, Dextran grafting on PTFE surface for cardiovascular applications. Biomatter, 2014. 4(1): p. F28805.
[76] Birks, J.B., Photophysics of aromatic molecules. (No Title), 1970.
[77] Kalyanasundaram, K. and J. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 1977. 99(7): p. 2039-2044.
[78] Jaafar, N.F., A.A. Jalil, S. Triwahyono, M.N.M. Muhid, N. Sapawe, M.A.H. Satar, and H. Asaari, Photodecolorization of methyl orange over α-Fe2O3-supported HY catalysts: The effects of catalyst preparation and dealumination. Chemical Engineering Journal, 2012. 191: p. 112-122.
[79] Ngah, W.W. and M. Hanafiah, Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 2008. 39(3): p. 521-530.
[80] Ngah, W.W. and S. Fatinathan, Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 2010. 91(4): p. 958-969.
[81] Lagergren, S., Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898. 24: p. 1-39.
[82] Bhattacharya, A.K. and C. Venkobachar, Removal of cadmium (II) by low cost adsorbents. Journal of Environmental Engineering, 1984. 110(1): p. 110-122.
[83] Ho, Y.-S. and G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry, 1999. 34(5): p. 451-465.
[84] Komulainen, S., C. Verlackt, J. Pursiainen, and M. Lajunen, Oxidation and degradation of native wheat starch by acidic bromate in water at room temperature. Carbohydrate Polymers, 2013. 93(1): p. 73-80.
[85] Chen, S., H. Wu, J.-h. Hua, J.-w. Yang, H.-b. Zhang, and X.-q. Hu, The effect of NaOH and NaClO/NaBr modification on the structural and physicochemical properties of dextran. New Journal of Chemistry, 2018. 42(8): p. 6274-6282.
[86] Hiemstra, C., L.J. van der Aa, Z. Zhong, P.J. Dijkstra, and J. Feijen, Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules, 2007. 40(4): p. 1165-1173.
[87] Feng, F., Q. Zhou, Y. Yang, F. Zhao, R. Du, Y. Han, H. Xiao, and Z. Zhou, Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. International Journal of Biological Macromolecules, 2018. 113: p. 45-50.
[88] Lee, S., T.W. Kang, I.-J. Hwang, H.-I. Kim, S.-J. Jeon, D. Yim, C. Choi, W. Son, H. Kim, and C.-S. Yang, Transition-metal dichalcogenide artificial antibodies with multivalent polymeric recognition phases for rapid detection and inactivation of pathogens. Journal of the American Chemical Society, 2021. 143(36): p. 14635-14645.
[89] Zhou, Q., F. Feng, Y. Yang, F. Zhao, R. Du, Z. Zhou, and Y. Han, Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules, 2018. 107: p. 2234-2241.
[90] Stevens, J.S. and S.L. Schroeder, Quantitative analysis of saccharides by X‐ray photoelectron spectroscopy. Surface and Interface Analysis: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films, 2009. 41(6): p. 453-462.
[91] Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221.
[92] Kelemen, S., M. Afeworki, M. Gorbaty, and A. Cohen, Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods. Energy & fuels, 2002. 16(6): p. 1450-1462.
[93] Ju, X., B. Šmíd, V. Johánek, I. Khalakhan, Y. Yakovlev, I. Matolínová, and V. Matolín, Investigation of dextran adsorption on polycrystalline cerium oxide surfaces. Applied Surface Science, 2021. 544: p. 148890.
[94] Bodenes, L., A. Darwiche, L. Monconduit, and H. Martinez, The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. Journal of Power Sources, 2015. 273: p. 14-24.
[95] Jiang, G., T. Lin, Y. Qin, X. Zhang, L. Hou, Y. Sun, J. Huang, S. Liu, and S. Zhao, Accelerating the peroxidase-like activity of MoSe 2 nanosheets at physiological pH by dextran modification. Chemical Communications, 2020. 56(74): p. 10847-10850.
[96] Nagahama, K., Y. Mori, Y. Ohya, and T. Ouchi, Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation. Biomacromolecules, 2007. 8(7): p. 2135-2141.
[97] Topel, Ö., B.A. Çakır, L. Budama, and N. Hoda, Determination of critical micelle concentration of polybutadiene-block-poly (ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. Journal of Molecular Liquids, 2013. 177: p. 40-43.
[98] Souza, T.G., V.S. Ciminelli, and N.D.S. Mohallem. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. in Journal of Physics: Conference Series. 2016. IOP Publishing.
[99] Arleth, L., B. Ashok, H. Onyuksel, P. Thiyagarajan, J. Jacob, and R.P. Hjelm, Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir, 2005. 21(8): p. 3279-3290.
[100] Ramiah, M., Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 1970. 14(5): p. 1323-1337.
[101] Li, W., L. Yun, M. Rifky, R. Liu, T. Wu, W. Sui, and M. Zhang, Carboxymethylation of (1→ 6)-α-dextran from Leuconostoc spp.: Effects on microstructural, thermal and antioxidant properties. International Journal of Biological Macromolecules, 2021. 166: p. 1-8.
[102] Rahul, R., U. Jha, G. Sen, and S. Mishra, Carboxymethyl inulin: a novel flocculant for wastewater treatment. International Journal of Biological Macromolecules, 2014. 63: p. 1-7.
[103] Ghorai, A., S. Bayan, N. Gogurla, A. Midya, and S.K. Ray, Highly luminescent WS2 quantum dots/ZnO heterojunctions for light emitting devices. ACS Applied Materials & Interfaces, 2017. 9(1): p. 558-565.
[104] Zhao, W., Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS nano, 2013. 7(1): p. 791-797.
[105] Das, P. and M.K. Das, Production and physicochemical characterization of nanocosmeceuticals, in Nanocosmeceuticals. 2022, Elsevier. p. 95-138.
[106] Zong, L., M. Li, and C. Li, Bioinspired coupling of inorganic layered nanomaterials with marine polysaccharides for efficient squeous exfoliation and smart actuating hybrids. Advanced Materials (Deerfield Beach, Fla.), 2017. 29(10).
[107] Zong, L., M. Li, and C. Li, Bioinspired Coupling of Inorganic Layered Nanomaterials with Marine Polysaccharides for Efficient Aqueous Exfoliation and Smart Actuating Hybrids. Advanced Materials (Deerfield Beach, Fla.), 2017. 29(10).
[108] Yuan, Y., R. Li, and Z. Liu, Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Analytical Chemistry, 2014. 86(7): p. 3610-3615.
[109] Zhang, C., D.-F. Hu, J.-W. Xu, M.-Q. Ma, H. Xing, K. Yao, J. Ji, and Z.-K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano, 2018. 12(12): p. 12347-12356.
[110] Vega‐Mayoral, V., C. Backes, D. Hanlon, U. Khan, Z. Gholamvand, M. O'Brien, G.S. Duesberg, C. Gadermaier, and J.N. Coleman, Photoluminescence from liquid‐exfoliated WS2 monomers in poly (vinyl alcohol) polymer composites. Advanced Functional Materials, 2016. 26(7): p. 1028-1039.
[111] Wieting, T. and J. Verble, Infrared and Raman studies of long-wavelength optical phonons in hexagonal Mo S 2. Physical Review B, 1971. 3(12): p. 4286.
[112] Berkdemir, A., H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, and J.-C. Charlier, Identification of individual and few layers of WS2 using Raman spectroscopy. Scientific Reports, 2013. 3(1): p. 1755.
[113] O’Brien, M., K. Lee, R. Morrish, N.C. Berner, N. McEvoy, C.A. Wolden, and G.S. Duesberg, Plasma assisted synthesis of WS2 for gas sensing applications. Chemical Physics Letters, 2014. 615: p. 6-10.
[114] Zeng, H., G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, and W. Yao, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 2013. 3(1): p. 1608.
[115] Cong, C., J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, Synthesis and optical properties of large‐area single‐crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Advanced Optical Materials, 2014. 2(2): p. 131-136.
[116] Shpak, A., A. Korduban, M. Medvedskij, and V. Kandyba, XPS studies of active elements surface of gas sensors based on WO3− x nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 2007. 156: p. 172-175.
[117] Abbas, O.A., I. Zeimpekis, H. Wang, A.H. Lewis, N.P. Sessions, M. Ebert, N. Aspiotis, C.-C. Huang, D. Hewak, and S. Mailis, Solution-based synthesis of few-layer WS2 large area continuous films for electronic applications. Scientific Reports, 2020. 10(1): p. 1696.
[118] Scarfiello, R., E. Mazzotta, D. Altamura, C. Nobile, R. Mastria, S. Rella, C. Giannini, P.D. Cozzoli, A. Rizzo, and C. Malitesta, An insight into chemistry and structure of colloidal 2D-WS2 nanoflakes: combined XPS and XRD study. Nanomaterials, 2021. 11(8): p. 1969.
[119] Karger, L., K. Synnatschke, S. Settele, Y.J. Hofstetter, T. Nowack, J. Zaumseil, Y. Vaynzof, and C. Backes, The role of additives in suppressing the degradation of liquid‐exfoliated WS2 monolayers. Advanced Materials, 2021. 33(42): p. 2102883.
[120] Mao, X., Y. Xu, Q. Xue, W. Wang, and D. Gao, Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Research Letters, 2013. 8: p. 1-6.
[121] Simon Patrick, D., P. Bharathi, M. Krishna Mohan, C. Muthamizchelvan, S. Harish, and M. Navaneethan, Liquid phase exfoliated WS 2 nanosheet-based gas sensor for room temperature NO 2 detection. Journal of Materials Science: Materials in Electronics, 2022: p. 1-11.
[122] Altavilla, C., M. Sarno, and P. Ciambelli, A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@ oleylamine (M Mo, W). Chemistry of Materials, 2011. 23(17): p. 3879-3885.
[123] Pradhan, G. and A.K. Sharma, Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films. Journal of Materials Science, 2019. 54(24): p. 14809-14824.
[124] Chung, D., Review graphite. Journal of Materials Science, 2002. 37: p. 1475-1489.
[125] Lin, Y., Z. Zeng, J. Zhu, S. Chen, X. Yuan, and L. Liu, Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Advances, 2015. 5(71): p. 57771-57780.
[126] Sharma, S., G. Kalita, R. Vishwakarma, Z. Zulkifli, and M. Tanemura, Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Scientific Reports, 2015. 5(1): p. 10426.
[127] Bradley, D., Z.S. Rozaila, M. Khandaker, K. Almugren, W. Meevasana, and S.A. Sani, Raman spectroscopy and X-ray photo-spectroscopy analysis of graphite media irradiated at low doses. Applied Radiation and Isotopes, 2019. 147: p. 105-112.
[128] Wu, C.-Y., A.Z. Melaku, W.-T. Chuang, and C.-C. Cheng, Manipulating the self-assembly behavior of graphene nanosheets via adenine-functionalized biodegradable polymers. Applied Surface Science, 2022. 572: p. 151437.
[129] Kaniyoor, A. and S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. Aip Advances, 2012. 2(3).
[130] Malard, L.M., M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
[131] Bokobza, L., J.-L. Bruneel, and M. Couzi, Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vibrational Spectroscopy, 2014. 74: p. 57-63.
[132] Singh, B., G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, and A. Singh, Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy. Scientific Reports, 2016. 6(1): p. 1-10.
[133] Zhang, K., Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 2017. 5(46): p. 11992-12022.
[134] Xie, S., P. Huang, J.J. Kruzic, X. Zeng, and H. Qian, A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Scientific Reports, 2016. 6(1): p. 21947.
[135] Ekimov, A.I., A.L. Efros, and A.A. Onushchenko, Quantum size effect in semiconductor microcrystals. Solid State Communications, 1985. 56(11): p. 921-924.
[136] Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 1966. 15(2): p. 627-637.
[137] Jubu, P.R., O. Obaseki, A. Nathan-Abutu, F. Yam, Y. Yusof, and M. Ochang, Dispensability of the conventional Tauc’s plot for accurate bandgap determination from uv–vis optical diffuse reflectance data. Results in Optics, 2022. 9: p. 100273.
[138] Jubu, P., F. Yam, V. Igba, and K. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from uv–vis–nir data–a case study of β-Ga2O3. Journal of Solid State Chemistry, 2020. 290: p. 121576.
[139] Cheng, Y., N.H. Shah, J. Yang, K. Zhang, Y. Cui, and Y. Wang, Bi-based Z-scheme nanomaterials for the photocatalytic degradation of organic dyes. ACS Applied Nano Materials, 2019. 2(10): p. 6418-6427.
[140] Wang, K.-H., Y.-H. Hsieh, C.-H. Wu, and C.-Y. Chang, The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere, 2000. 40(4): p. 389-394.
[141] Mittal, H., A. Kumar, and M. Khanuja, In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. Journal of Saudi Chemical Society, 2019. 23(7): p. 836-845.
[142] Sahoo, T.R. and B. Prelot, Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology, in Nanomaterials for the Detection and Removal of Wastewater Pollutants. 2020, Elsevier. p. 161-222.
[143] Ahmadi, S. and H. Ganjidoust, Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of acid blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 2021. 9(5): p. 106010.
[144] Fathinia, M. and A. Khataee, Photocatalytic ozonation of phenazopyridine using TiO2 nanoparticles coated on ceramic plates: mechanistic studies, degradation intermediates and ecotoxicological assessments. Applied Catalysis A: General, 2015. 491: p. 136-154.
[145] Wu, X.F., H. Li, Y. Zhang, J.R. Zhang, J.Z. Su, Y.M. Feng, W.G. Zhang, L.S. Sun, and X.G. Sun, Synthesis of AgI/WS2 hybrids as a novel photocatalyst with efficient degradation of rhodamine B. Micro & Nano Letters, 2019. 14(2): p. 173-177.
[146] Hu, X.-S., R. Liang, and G. Sun, Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. Journal of Materials Chemistry A, 2018. 6(36): p. 17612-17624.
[147] Yu, X., L. Huang, Y. Wei, J. Zhang, Z. Zhao, W. Dai, and B. Yao, Controllable preparation, characterization and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology. Materials Research Bulletin, 2015. 64: p. 410-417.
[148] Liu, B., L. Wen, K. Nakata, X. Zhao, S. Liu, T. Ochiai, T. Murakami, and A. Fujishima, Polymeric adsorption of methylene blue in TiO2 colloids—highly sensitive thermochromism and selective photocatalysis. Chemistry–A European Journal, 2012. 18(40): p. 12705-12711.
[149] Yuan, H., S. Ma, X. Wang, H. Long, X. Zhao, D. Yang, W.H. Lo, and Y.H. Tsang, Ultra-high adsorption of cationic methylene blue on two dimensional titanate nanosheets. RSC advances, 2019. 9(11): p. 5891-5894.
[150] Dinh, V.-P., H.M. Le, V.-D. Nguyen, V.-A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, and L. Tan, Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Advances, 2019. 9(44): p. 25847-25860.
[151] Fernandes, A., C. Almeida, C. Menezes, N. Debacher, and M. Sierra, Removal of methylene blue from aqueous solution by peat. Journal of Hazardous Materials, 2007. 144(1-2): p. 412-419.

無法下載圖示 全文公開日期 2033/08/24 (校內網路)
全文公開日期 2033/08/24 (校外網路)
全文公開日期 2033/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE