簡易檢索 / 詳目顯示

研究生: 洪真祥
Zhen-Xiang Hong
論文名稱: 以果膠/聚乙烯醇/糖類製作可溶解式背板之高強度互穿聚合網絡水膠微針貼片應用於包覆抗癌及免疫活化藥物以對抗小鼠皮下腦瘤生長
Preparation of dissolvable backbone with high-strength interpenetrating polymer network hydrogel microneedle patch with Pectin/Polyvinyl alcohol /Sugars as backing material for encapsulation of anti-cancer and immune-activating drugs to treat subcutaneous glioma growth in mice
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
陳玉暄
Yu-Shuan Chen
林宣因
Shuian-Yin Lin
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 水膠微針貼片可溶解式背板抗腦瘤藥物免疫活化劑
外文關鍵詞: Hydrogel microneedle patches, Anti-glioblastoma drug, Immunomodulator
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微針給藥系統是近年來較為創新之經皮給藥方式之一,可穿透人類皮膚角質層並將內含的藥物送至真皮層內以達到治療效果,且可達到無痛、具有藥物緩釋、與友善病人自主給藥等多種效果,是一個結合針頭給藥及口服給藥的優點的給藥策略。因此本研究中,利用高分子01及高分子02作為微針貼片主體,並再添加小分子01及小分子02以形成混和水膠,分別作為微針針層及背板層之材料,再將其利用物理交聯方式形成互穿聚合物網絡水膠,並進行後續的性質測試及應用之可行性。利用磁懸浮迴轉式流變儀能證明糖類能使水膠內的分子間排列更加緊密且使其更加濃稠,而高分子02於低溫下能利用分子間的氫鍵及羥基的縮合而形成網絡結構進行第一層的物理交聯,再以高分子01螯合金屬離子作為第二層的離子鍵交聯,且利用拉力試驗機測定不同小分子溶液、浸泡濃度以及時間之機械性質,使其較未交聯時提升1.89倍的應力值,而楊式模數則提高了1.75倍。從光學顯微鏡及掃瞄電子顯微鏡中能確認微針型態具有高度完整針尖樣貌,而在拉曼試驗中的2D、3D掃描成像功能以及微針貼片包覆螢光蛋白中能確認針層及背板層之差異性。可溶解式背板之微針貼片應用於動物皮膚上,不但可在成功地穿刺皮膚且可利用含有酵素01的磷酸鹽緩衝液體溶解微針貼片背板層。在體外測試於含有1000 ppm酵素01磷酸鹽緩衝液中,於60分鐘時達到了90.56%的降解率,且含有抗腦瘤藥物及免疫活化劑的微針貼片於24小時中,分別達到56.38%及87.44%藥物釋放率。細胞存活率實驗中,在結合抗腦瘤藥物及免疫活化劑的微針貼片於小鼠神經膠質瘤細胞實驗以死活染色 (Live-dead) 證實藥物可順利釋放並毒殺細胞,其腫瘤細胞存活率僅只達58.07%。在動物實驗中,皮下腫瘤在結合抗腦瘤藥物及免疫活化劑的微針貼片治療後,能減緩腫瘤生長,使腫瘤體積及重量下降,達至最佳的治療效果。利用蘇木精-伊紅染色,可觀察到腫瘤細胞之細胞核明顯受損,且在免疫組織化學染色中觀察到凋亡指標Cleaved-caspase 3訊號上升及增生指標Ki-67訊號下降。因此於本研究中能證明此微針貼片是有能力穿刺皮膚,並將攜帶的藥物抗腦瘤藥物及免疫活化劑釋放於體內進而達到毒殺腫瘤與治療癌症之效果。


    The microneedle drug delivery system is one of the innovative transdermal drug delivery methods in recent years. It can penetrate the human skin's stratum corneum and deliver drugs to the dermis to achieve therapeutic effects. It combines the advantages of needle injection and oral administration, offering painless delivery and various drug release benefits. In this study, polymer 01 and polymer 02 were used as the main materials for the microneedle patch. Low molecule 01 and Low molecule 02 were added to form a blended hydrogel, serving as the needles layer and backbone layer materials. The hydrogel was physically cross-linked to form an interpenetrating polymer network. The features of microneedle and the administration application in vivo was conducted in the present study. Using low molecule incorporated into the hydrogel increased the density and viscosity of the hydrogel to promote tighter molecular alignment as evidenced by rheometer. Polymer 02 formed the first layer of physical crosslinking through condensation between hydrogen bonding and hydroxyl group at low temperatures. Polymer 01 chelated with metal ions to form the second layer of ionic crosslinking. The mechanical properties were evaluated using a tensile testing instrument. The stress degree of crosslinking hydrogel was increased by 1.89 times compared to that of uncross-linked state, as well as an enhancement of 1.75 times in the Young's modulus. Different kinds of metal ion solutions, solution concentrations, and time durations were examined to determine these mechanical properties. The microneedle morphology with highly intact needle tips was confirmed through optical microscopy (OM) and scanning electron microscopy (SEM). Additionally, the differentiation between the needles layer and backbone layer was observed in the 2D and 3D mapping conducted during Raman spectroscopy experiments. Additionally, the fluorescence protein as model drug to confirm that all fluorescence protein was incorporated into the needle layer not the backbone layer. The microneedle patch was also applied to both mouse and human skin. The results showed that microneedle patch successfully permeated the skin and wounds were formed on the skin after microneedle removed. The backbone layer achieved to 90.56% degradation after 60 minutes when the backbone immersed in 1xPBS containing enzyme solution. The drug release rates of anti-glioblastoma drug and immunomodulator in microneedle patch were 56.38% and 87.44% after 24 hours. The live-death experiments showed the cytotoxicity in CT-2A cells using microneedle patch containing anti-glioblastoma drug and immunomodulator, and moreover, a survival rate decreased to 58.07% demonstrated through cell viability. In animal experiments, subcutaneous tumors treated with the microneedle patch containing anti-glioblastoma drug and immunomodulator showed a reduction in tumor growth, resulting in decreased tumor volume and weight, thereby achieving optimal therapeutic effects. In H&E staining, nuclear damage of tumor cells could be observed, while IHC revealed an increase in Cleaved-caspase 3 marker and a decrease in Ki-67 marker. Therefore, this study demonstrates that the microneedle patch carrying anti-glioblastoma drug and immunomodulator has the ability to penetrate the skin, releasing drugs in cell models and animal experiments, and effectively treat subcutaneous tumor models.

    第一章 緒論 1 第二章 文獻回顧 3 2-1 水膠 3 2-1-1 物理交聯水膠 4 2-1-2 化學交聯水膠 4 2-1-3 互穿聚合網絡水膠 5 2-2 藥物傳遞介紹 6 2-2-1 經皮給藥系統 6 2-2-2 微針貼片 9 2-2-2-1 固體實心微針 10 2-2-2-2 塗佈型微針 11 2-2-2-3 可溶解式微針 12 2-2-2-4 中空固體微針 13 2-2-2-5 水膠微針 14 2-3 疾病模式及治療策略 16 2-3-1 腦瘤概述 16 2-3-2 治療藥物 16 2-3-3 正丁烯基苯酞 17 2-3-4 雷西莫特 18 2-4 實驗材料背景介紹 19 2-4-1 果膠 19 2-4-2 聚乙烯醇 19 2-4-3 甘露醇 20 2-4-4 蔗糖 20 2-4-5 材料結合以及優勢 21 第三章 實驗材料方法 22 3-1 實驗材料 22 3-2 實驗設備 24 3-3 實驗儀器 26 3-4 實驗方法 29 3-4-1 微針製備方式 29 3-4-2 背板降解 30 3-4-3 藥物釋放 31 3-4-4 細胞培養/MTT assay 31 3-4-5 立體培養液模型及死活細胞染色 32 3-4-6 動物實驗 33 3-5 實驗流程圖 34 第四章 結果與討論 35 4-1 配方選定 35 4-2 磁懸浮迴轉式流變儀分析 37 4-3 拉伸試驗分析 40 4-4 微針型態 45 4-5 拉曼試驗 47 4-6 微針貼片應用 51 4-6-1 皮膚穿刺實驗 51 4-6-2 背板降解實驗 52 4-6-3 微針貼片於皮膚測試 54 4-7 體外藥物釋放 55 4-7-1 Bdph於微針貼片的釋放表現 55 4-7-2 R848於微針貼片的釋放表現 57 4-8 微針包覆螢光蛋白 59 4-9 細胞實驗 60 4-9-1 死活細胞染色法(Calcein AM/PI stain) 60 4-9-2 MTT assay 61 4-10 動物實驗 62 4-10-1 皮下腫瘤治療 62 4-10-2 組織切片染色 64 4-11 研究討論 66 4-11-1 材料利弊之挑選及比較 66 4-11-2 可溶式背板層之優勢 66 第五章 結論 68 第六章 參考文獻 70

    1. Jo, H., et al., Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. Int J Mol Sci, 2021. 22(5).
    2. Chen, Y., et al., Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release, 2017. 265: p. 14-21.
    3. George, J., et al., Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv, 2020. 42: p. 107370.
    4. Aldawood, F.K., A. Andar, and S. Desai, A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers (Basel), 2021. 13(16).
    5. Sullivan, S.P., et al., Dissolving polymer microneedle patches for influenza vaccination. Nat Med, 2010. 16(8): p. 915-20.
    6. Chi, H., et al., Anti-tumor Activity of Toll-Like Receptor 7 Agonists. Front Pharmacol, 2017. 8: p. 304.
    7. Caló, E. and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267.
    8. Roy, A., et al., Controlled pesticide release from biodegradable polymers. Open Chemistry, 2014. 12(4): p. 453-469.
    9. Trujillo Toledo, L.E., et al., Fructosyltransferases and Invertases: Useful Enzymes in the Food and Feed Industries, in Enzymes in Food Biotechnology. 2019. p. 451-469.
    10. Nagarkar, R., et al., A review of recent advances in microneedle technology for transdermal drug delivery. Journal of Drug Delivery Science and Technology, 2020. 59.
    11. Wang, M., et al., Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials. International Journal of Polymer Science, 2021. 2021: p. 1-16.
    12. Banet, P., et al., Evaluation of dielectric elastomers to develop materials suitable for actuation. Soft Matter, 2021. 17(48): p. 10786-10805.
    13. Turner, J.G., et al., Hydrogel-Forming Microneedles: Current Advancements and Future Trends. Macromol Biosci, 2021. 21(2): p. e2000307.
    14. Jeong, W.Y., et al., Recent advances in transdermal drug delivery systems: a review. Biomater Res, 2021. 25(1): p. 24.
    15. Waghule, T., et al., Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother, 2019. 109: p. 1249-1258.
    16. Bustamante-Torres, M., et al., Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 2021. 7(4).
    17. Agnihotri, S., et al., Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz), 2013. 61(1): p. 25-41.
    18. Tsai, N.M., et al., The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem, 2006. 99(4): p. 1251-62.
    19. Turco, V., et al., T cell-independent eradication of experimental glioma by intravenous TLR7/8-agonist-loaded nanoparticles. Nat Commun, 2023. 14(1): p. 771.
    20. Nesic, A., et al., Impact of Crosslinking on the Characteristics of Pectin Monolith Cryogels. Polymers (Basel), 2022. 14(23).
    21. Nakano, T. and T. Nakaoki, Coagulation size of freezable water in poly(vinyl alcohol) hydrogels formed by different freeze/thaw cycle periods. Polymer Journal, 2011. 43(11): p. 875-880.
    22. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21.
    23. O. WICHTERLE, D.L., Hydrophilic Gels for Biological Use. Nature, 1960. 185: p. 117-118.
    24. Saxena, A.K., Synthetic biodegradable hydrogel (PleuraSeal) sealant for sealing of lung tissue after thoracoscopic resection. J Thorac Cardiovasc Surg, 2010. 139(2): p. 496-7.
    25. X. Chen”, B.D., Martin”, T.K. Neubauer”, R-J. Linhardt”, J.S. Dordick” & D.G. Rethwisch””, Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels Carbohydrate Polymers 1995. 28: p. 15-21.
    26. Sikareepaisan, P., U. Ruktanonchai, and P. Supaphol, Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydrate Polymers, 2011. 83(4): p. 1457-1469.
    27. Bahram, M., N. Nurallahzadeh, and N. Mohseni, pH-sensitive hydrogel for coacervative cloud point extraction and spectrophotometric determination of Cu (II): optimization by central composite design. Journal of the Iranian Chemical Society, 2015. 12(10): p. 1781-1787.
    28. Mooney, K.Y.L.a.D.J., Hydrogels for Tissue Engineering. Chemical Reviews, 2001. 101.
    29. W.E. Hennink , C.F.v.N., Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2002. 54: p. 13-36.
    30. Sperling, L.H., Interpenetrating Polymer Networks: An Overview Advances in Chemistry, 1994.
    31. Sankha Bhattacharya, P.R. and a.B. Prajapati, Introductory Chapter: Advanced Drug Delivery Systems. Advanced Drug Delivery Systems, 2023.
    32. Andersson, T., et al., Common skin bacteria protect their host from oxidative stress through secreted antioxidant RoxP. Sci Rep, 2019. 9(1): p. 3596.
    33. Slominski, A.T., P.R. Manna, and R.C. Tuckey, On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids, 2015. 103: p. 72-88.
    34. Vitorino, C., J. Sousa, and A. Pais, Overcoming the skin permeation barrier: challenges and opportunities. Curr Pharm Des, 2015. 21(20): p. 2698-712.
    35. Han, T. and D.B. Das, Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm, 2015. 89: p. 312-28.
    36. Yannic B Schuetz, A.N., Richard H Guy , Yogeshvar N Kalia, Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opinion on Drug Delivery, 2005. 2: p. 533-548.
    37. Erdo, F., et al., Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release, 2016. 233: p. 147-61.
    38. Jiang, T., et al., Progress in transdermal drug delivery systems for cancer therapy. Nano Research, 2020. 13(7): p. 1810-1824.
    39. Chambers, R., Microdissection Studies, III. Some Problems in the Maturation and Fertilization of the Echinoderm Egg. Biological Bulletin, 1921. 41: p. 318-350.
    40. Place, M.S.G.A., Drug delivery device Abstract. United States Paten 1976.
    41. Reed, M.L. and W.K. Lye, Microsystems for Drug and Gene Delivery. Proceedings of the IEEE, 2004. 92(1): p. 56-75.
    42. Prausnitz, M.R., Microneedles for transdermal drug delivery. Adv Drug Deliv Rev, 2004. 56(5): p. 581-7.
    43. Kulkarni, D., et al., Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics, 2022. 14(5).
    44. Li, Q.Y., et al., A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Advances, 2017. 7(25): p. 15408-15415.
    45. Giri Nandagopal, M.S., et al., Overview of microneedle system: a third generation transdermal drug delivery approach. Microsystem Technologies, 2014. 20(7): p. 1249-1272.
    46. Ma, G. and C. Wu, Microneedle, bio-microneedle and bio-inspired microneedle: A review. J Control Release, 2017. 251: p. 11-23.
    47. Ita, K., Transdermal Delivery of Drugs with Microneedles-Potential and Challenges. Pharmaceutics, 2015. 7(3): p. 90-105.
    48. Takaya Miyano, Y.T., Takahiro, Y.M. Kanno, Hitoshi Takeda,Makoto, and a.K.H. Wakui, Sugar Micro Needles as Transdermic Drug Delivery System. Biomedical Microdevices, 2005. 7:3: p. 185-188.
    49. Zhu, D.D., et al., Rapidly separating microneedles for transdermal drug delivery. Acta Biomater, 2016. 41: p. 312-9.
    50. Fentahun Darge, H., et al., Separable double-layered microneedle-based transdermal codelivery of DOX and LPS for synergistic immunochemotherapy of a subcutaneous glioma tumor. Chemical Engineering Journal, 2022. 433.
    51. Karelin, A.M., et al., Development of a Modular Reconfigurable Mold for Prototyping of Hollow Microneedles, in 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). 2022. p. 1531-1533.
    52. Makvandi, P., et al., Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. Nanomicro Lett, 2021. 13(1): p. 93.
    53. Masato Suzuki, T.T. and a.S. Aoyagi, 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. International Journal of Nanotechnology, 2018. 15.
    54. Li, Y., et al., Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst Nanoeng, 2019. 5: p. 41.
    55. Donnelly, R.F., et al., Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv Funct Mater, 2012. 22(23): p. 4879-4890.
    56. Sharma, S., et al., Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. Mater Sci Eng C Mater Biol Appl, 2019. 103: p. 109717.
    57. Hanif, F., et al., Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev, 2017. 18(1): p. 3-9.
    58. Stupp, R., et al., High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2014. 25 Suppl 3: p. iii93-101.
    59. Feldheim, J., et al., Changes of O(6)-Methylguanine DNA Methyltransferase (MGMT) Promoter Methylation in Glioblastoma Relapse-A Meta-Analysis Type Literature Review. Cancers (Basel), 2019. 11(12).
    60. Gil-Gil, M.J., et al., Bevacizumab for the treatment of glioblastoma. Clin Med Insights Oncol, 2013. 7: p. 123-35.
    61. Goel, S., A.H. Wong, and R.K. Jain, Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med, 2012. 2(3): p. a006486.
    62. Li, Y.L., H. Zhao, and X.B. Ren, Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol Med, 2016. 13(2): p. 206-14.
    63. Thomas, A.A., et al., Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma. Cancer Immunology, Immunotherapy, 2016. 66(3): p. 379-389.
    64. Stylli, S.S., Novel Treatment Strategies for Glioblastoma. Cancers (Basel), 2020. 12(10).
    65. Liu, W.S., et al., Inhibitory effect of n-butylidenephthalide on neointimal hyperplasia in balloon injured rat carotid artery. Phytother Res, 2011. 25(10): p. 1494-502.
    66. Liu, C.A., et al., Interstitial Control-Released Polymer Carrying a Targeting Small-Molecule Drug Reduces PD-L1 and MGMT Expression in Recurrent High-Grade Gliomas with TMZ Resistance. Cancers (Basel), 2022. 14(4).
    67. Stathopoulos, A., et al., Development of immune memory to glial brain tumors after tumor regression induced by immunotherapeutic Toll-like receptor 7/8 activation. Oncoimmunology, 2012. 1(3): p. 298-305.
    68. Yin, T., S. He, and Y. Wang, Toll-like receptor 7/8 agonist, R848, exhibits antitumoral effects in a breast cancer model. Mol Med Rep, 2015. 12(3): p. 3515-3520.
    69. Nesic, A.R., et al., Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr Res, 2011. 346(15): p. 2463-8.
    70. Han, S.S., et al., Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels, 2022. 8(12).
    71. Gregor T. Grant , E.R.M., David A. Rees, Peter J.C. Smith , David Thom Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 1973. 32: p. 195-198.
    72. Gaaz, T.S., et al., Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules, 2015. 20(12): p. 22833-47.
    73. E Yokoyama, I.M., K. Shimamura, T. Ikawa, and K. Monobe, Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting Colloid & Polymer Science, 1986. 264: p. 595-601.
    74. Wahab, A.H.A., et al., Developing functionally graded PVA hydrogel using simple freeze-thaw method for artificial glenoid labrum. J Mech Behav Biomed Mater, 2019. 91: p. 406-415.
    75. Shawkat, H., M.-M. Westwood, and A. Mortimer, Mannitol: a review of its clinical uses. Continuing Education in Anaesthesia Critical Care & Pain, 2012. 12(2): p. 82-85.
    76. Yusuf Kemal Demir and a.O. Kerimoglu, Novel Use of Pectin as a Microneedle Base. Chemical and Pharmaceutical Bulletin, 2015. 63(4): p. 300-304.
    77. Salehi, F., et al., Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci Rep, 2018. 8(1): p. 13902.
    78. Oh, N.G., S.Y. Hwang, and Y.H. Na, Fabrication of a PVA-Based Hydrogel Microneedle Patch. ACS Omega, 2022. 7(29): p. 25179-25185.
    79. Nguyen, H.X., et al., Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm, 2018. 129: p. 88-103.
    80. Hiep X Nguyen and A.K. Banga, Fabrication, characterization and application of sugar microneedles fortransdermal drug delivery. Therapeutic Delivery, 2017. 8(5): p. 249-264.
    81. Kim, E., et al., Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. Int J Biol Macromol, 2020. 154: p. 989-998.
    82. De Oliveira, L.F.C., R. Colombara, and H.G.M. Edwards, Fourier Transform Raman Spectroscopy of Honey. Applied Spectroscopy, 2016. 56(3): p. 306-311.
    83. Zhang, X., et al., Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull (Beijing), 2019. 64(15): p. 1110-1117.
    84. Harn, H.J., et al., Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas. Neuro Oncol, 2011. 13(6): p. 635-48.
    85. Tian, Z., et al., Combination of Radiofrequency Ablation With Resiquimod to Treat Hepatocellular Carcinoma Via Inflammation of Tumor Immune Microenvironment and Suppression of Angiogenesis. Front Oncol, 2022. 12: p. 891724.
    86. Wong, E., et al., Imaging of therapy-induced apoptosis using (99m)Tc-HYNIC-annexin V in thymoma tumor-bearing mice. Cancer Biother Radiopharm, 2008. 23(6): p. 715-26.
    87. OLIVIER RAMUZ, D.I., ELISABETH, E.C.-J. DEVILARD, JACQUES, and F.O.B.A.L.X. HASSOUN, Constitutive nuclear localization and initial cytoplasmic apoptotic activation of endogenous caspase-3 evidenced by confocal microscopy. international journal of experimental pathology, 2003. 84: p. 75-87.
    88. Dias, E.P., et al., A novel evaluation method for Ki-67 immunostaining in paraffin-embedded tissues. Virchows Arch, 2021. 479(1): p. 121-131.
    89. Hara, Y., et al., The relationship between the Young's modulus of the stratum corneum and age: a pilot study. Skin Res Technol, 2013. 19(3): p. 339-45.
    90. Markov, P.A., et al., Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels. J Biomed Mater Res A, 2017. 105(9): p. 2572-2581.
    91. Sartawi, Z., C. Blackshields, and W. Faisal, Dissolving microneedles: Applications and growing therapeutic potential. J Control Release, 2022. 348: p. 186-205.
    92. Xu, X., et al., Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym, 2013. 98(2): p. 1573-7.
    93. Jain, N., V.K. Singh, and S. Chauhan, A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. Journal of the Mechanical Behavior of Materials, 2017. 26(5-6): p. 213-222.
    94. Wu, H.F., et al., Biodegradation of polyvinyl alcohol by different dominant degrading bacterial strains in a baffled anaerobic bioreactor. Water Sci Technol, 2019. 79(10): p. 2005-2012.
    95. Wang, C., et al., Rapidly separable microneedle patches for controlled release of therapeutics for long-acting therapies. Medicine in Drug Discovery, 2022. 13.

    無法下載圖示 全文公開日期 2033/07/24 (校內網路)
    全文公開日期 2033/07/24 (校外網路)
    全文公開日期 2033/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE