簡易檢索 / 詳目顯示

研究生: 黃懷靖
Huai-Jing Huang
論文名稱: 以模型為基礎進行重型履帶車用串聯式複合動力系統之分析及設計
Model-based analysis and design of a series hybrid electric propulsion system for heavy-duty tracked vehicles
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 姜嘉瑞
Chia-Jui Chiang
周志正
Chih-Cheng Chou
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 複合動力系統重型履帶車可行性分析概念設計數學模型
外文關鍵詞: Hybrid electric propulsion systems, Heavy-duty tracked vehicles, Feasibility analysis, conceptual design, mathematical model
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於複合動力系統能提供較佳的燃油經濟性、最佳化的動力和較低的污染物排放量,目前正穩步實現在商用車輛市場上,而與商用車輛相比,重型履帶車輛有著截然不同的使用需求,雖然燃油經濟性方面的需求仍然存在,履帶車輛中更需要能藉由複合動力系統提供快速且充足的動力以滿足機動性的需求,從而提升其移動性的能力。
重型履帶車輛必須有能力在任何極端環境條件下運作,能夠承受在崎嶇地形時越野行駛所經歷的振動與衝擊,並且必須能在很少或不需要維護的情況下長時間運行,為了提升重型履帶車輛的操作性能,必須將新興技術整合到現有的技術中。目前國外已有將複合動力系統應用於輕型履帶車輛的範例,然而,複合動力技術在重型履帶車輛上的應用仍被認為有許多的不確定性及需要克服的技術挑戰。
因此,本研究將進行油電複合動力系統於重型履帶車輛上應用的可行性分析及概念設計。首先分析各種動力系統的優缺點,選擇所要使用的動力系統,並根據國內複合動力系統相關產業技術發展能量來選擇適當的設備參數,透過各個子系統的數學模型來進行其可行性的評估,最後提出重型履帶車輛油電複合動力系統的概念設計和可行性分析,結果指出油電複合動力系統應用於重型履帶車是可行的發展,在使用1200hp引擎情況下,混合動力系統與純引擎系統相比,在水泥路面最多可改善82.4%油耗、在硬質土壤路面最多可改善22.2%油耗、在沙地路面可改善26.3%油耗,在油耗上有很大的提升。


Hybrid electric propulsion systems have been steadily realized in commercial vehicles due to the improved fuel economy, optimized performance and reduced emissions. Compared to the commercial vehicles, heavy-duty tracked vehicles have completely different needs. Even though the requirement for fuel economy still exists, it is more important to use the more powerful hybrid electric propulsion system to improve the mobility.
Heavy-duty tracked vehicles need to be capable of operating in any extreme environmental conditions, withstanding the vibration and shock in off-road driving, and working in long hours with low maintenance need. In order to improve the performance of the tracked vehicle, emerging techniques such as hybrid electric drive need to be employed in the current technology. Hybrid electric propulsion systems have been successfully implemented in light-duty tracked vehicles in other countries. The implementation of hybrid electric propulsion systems in heavy-duty tracked vehicles, however, still faces a lot of uncertainties and technical difficulties.
Therefore, feasibility analysis and conceptual design of hybrid electric propulsion systems in heavy-duty tracked vehicles is conducted in this work. First of all, literature review of hybrid electric vehicles is conducted to induce the current trends and key techniques in this field. Secondly, mathematical model of hybrid electric tracked vehicles is developed for quantitative evaluation of the benefits and feasibility of various conceptual designs. In the meantime, the existing domestic industrial resources in the hybrid propulsion systems is also be considered in the feasibility analysis. Finally, the model-based analysis and design of hybrid electric propulsion system for heavy-duty tracked vehicle is proposed. The results indicate that the application of the hybrid electric propulsion system in heavy-duty tracked vehicles is a feasible development. In the case of using 1200hp engine, comparing the hybrid electric propulsion system with the pure engine, the hybrid electric propulsion system can improve fuel consumption by up to 82.4% on cement road, up to 22.2% on hard soil road, and up to 26.3% on sandy road. The fuel consumption have been greatly improved.

摘要 i 英文摘要 ii 致謝 iv 目錄 vii 圖目錄 xii 表目錄 xiv 第一章 導論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 5 1.4 研究方法 5 1.4.1 Matlab 5 1.4.2 Similink 6 1.5 論文架構 6 第二章 複合動力系統實體模型建立 7 2.1 系統規格 7 2.2 系統架構選擇 9 2.2.1 串聯式油電複合電動車 (Series Hybrid Electric Vehicle, SHEV) 10 2.2.2 並聯式油電複合電動車 (Parallel Hybrid Electric Vehicle, PHEV) 12 2.2.3 混聯式油電複合電動車 (Series¬Parallel HEV) 13 2.3 子系統參考實體 15 2.3.1 內燃機 15 2.3.2 發電機 16 2.3.3 驅動馬達 18 2.3.4 鋰電池 20 2.3.5 傳動裝置 21 第三章 複合動力系統數學模型建立 23 3.1 子系統數學模型 23 3.1.1 內燃機模型 25 3.1.2 發電機模型 28 3.1.3 驅動馬達模型 31 3.1.4 鋰電池模型 35 3.1.5 傳動裝置模型 42 3.1.6 履帶車模型 44 3.2 控制器建立 47 3.2.1 模式切換邏輯架構 47 3.2.2 比例積分控制 49 第四章 模擬結果與討論 50 4.1 齒數比設計之模擬結果 50 4.1.1 單一檔位 52 4.1.2 兩個檔位 56 4.1.3 三個檔位 59 4.1.4 統整討論 62 4.2 鋰電池功率設計之模擬結果 63 4.3 不同 SOC 設定之模擬結果 67 4.4 整車油耗之分析結果 77 4.4.1 車輛直行之模擬結果 77 4.4.2 車輛轉向之模擬結果 81 4.4.3 車輛爬坡之模擬結果 85 第五章 結論與未來展望 91 5.1 結論 91 5.2 未來展望 93 附錄 (模型之參數) 94 參考文獻 98

[1] M. Ehsani, Y. Gao, S. Longo, and K. Ebrahimi, “Modern electric, hybrid electric, and fuel cell vehicles: Fundamentals, theory, and design,” in CRC Press, Energy Conversion and Management, pp. 1000–1009, 2014.
[2] ADVISOR, “Rint battery model,” 2003.
[3] E. A. Baylot Jr, B. Q. Gates, J. G. Green, P. W. Richmond, N. C. Goerger, G. L. Mason, C. L. Cummins, and L. S. Bunch, “Standard for ground vehicle mobility,” 2005.
[4] S. Feng-chun and Z. Chen-ning, Technologies for the hybrid electric drive system of armored vehicle. The National Defence Industry Press, 2008.
[5] R. Ogorkiewicz, “Electric transmission studies in france, j,” Jane’s International Defense Review, 1992.
[6] R. Ghorbani, E. Bibeau, P. Zanetel, and A. Karlis, “Modeling and simulation of a series parallel hybrid electric vehicle using revs,” in 2007 American Control Conference, pp. 4413–4418, July 2007.
[7] Z. Song, H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang, “Energy management strategies comparison for electric vehicles with hybrid energy storage system,” Applied Energy, vol. 134, pp. 321 – 331, 2014.
[8] Z. Jun-qing and W. Peng-cheng, “The development trend of military vehicle equipment,” Auto Application, 2003.
[9] W. Xiao-feng, “The matching of energy sources in hybrid energy sources ev,” Master Dissertation of Harbin Institute of Technology, 2006.
[10] C. Qing-quan and S. Feng-chun, “Modern electric vehicle technology,” Bei Jing Institute of Technology Press, 2002.
[11] H. Wang, Q. Song, S. Wang, and P. Zeng, “Dynamic modeling and control strategy optimization for a hybrid electric tracked vehicle,” Mathematical Problems in Engineering, vol. 2015, 2015.
[12] X. Rui, H. Hongwen, W. Yi, and Z. Xiaowei, “Study on ultracapacitor¬battery hybrid power system for phev applications,” High Technology Letters, vol. 16, no. 1, pp. 23 – 28, 2010.
[13] T.-S. Kwon, S.-W. Lee, S.-K. Sul, C.¬G. Park, N.¬I. Kim, B.¬i. Kang, and M.¬s. Hong, “Power control algorithm for hybrid excavator with supercapacitor,” IEEE Transactions on Industry Applications, vol. 46, pp. 1447–1455, July 2010.
[14] G. Khalil, “Challenges of hybrid electric vehicles for military applications,” in 2009 IEEE Vehicle Power and Propulsion Conference, pp. 1–3, Sep. 2009.
[15] J. M. Miller, Propulsion systems for hybrid vehicles, vol. 45. Iet, 2004.
[16] MTU, “Diesel engine 8v 880.” MTU Aero Engines AG, 1970.
[17] MTU, “Diesel engine 10v 890.” MTU Aero Engines AG, 1970.
[18] MTU, “Diesel engine 12v 880.” MTU Aero Engines AG, 1970.
[19] ADVISOR, “63kw generator data.” National Renewable Energy Laboratory, 2003. [20] Fukuta, “Motor spec.” Fukuta corp., 2019.
[21] ADVISOR, “100kw motor data.” National Renewable Energy Laboratory, 2003.
[22] Moli, “Lithium¬ion rechargeable battery.” Moli Energy Corp., 2019.
[23] J. Y. Wong, Theory of Ground Vehicles. J. Wiley & Sons, 2008.
[24] Y. Zou, F. Sun, X. Hu, L. Guzzella, and H. Peng, “Combined optimal sizing and control for a hybrid tracked vehicle,” Energies, vol. 5, no. 11, pp. 4697–4710, 2012.

無法下載圖示 全文公開日期 2025/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE