簡易檢索 / 詳目顯示

研究生: 洪優慧
Raissa Renata
論文名稱: 虛擬實境中的光源形式與強度對空間亮度的影響
Influence of Light Types and Intensity on Spatial Brightness in Virtual Reality
指導教授: 歐立成
Li-Chen Ou
口試委員: 孫沛立
Pei-Li Sun
李宗憲
Tsung-Xian Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 151
外文關鍵詞: spatial brightness, light types, light intensity, virtual reality, brightness matching
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • This study investigates the influence of light types and intensity on spatial brightness perception in virtual reality (VR). Spatial brightness is the result of the complex relationship between the luminance of an object and its surrounding environment. Four experiments were conducted using different types and intensities of virtual light sources in a VR environment, where the observers were asked to match the brightness of a test scene to a reference scene. The results show that different light types, such as spot, point, and rect lights, affected the perceived spatial brightness differently. The existence of an object on a vertical surface had insignificant influenced the spatial brightness perception. The order of reference light intensity and the presence of shadows also had little impact on the brightness matching. Experimental results show that light types and intensity are important factors for creating realistic and immersive VR experiences. At the end of the thesis, directions for future research in this area are recommended.

    Abstract i Acknowledgement ii Table of Contents iii List of Tables vii List of Figures xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objectives and Hypothesis 2 1.3 Research Approaches 3 1.3.1 Experiment 1 3 1.3.2 Experiment 2 3 1.3.3 Experiment 3 4 1.3.4 Experiment 4 4 1.4 Thesis Structure 4 1.4.1 Chapter 1 Introduction 4 1.4.2 Chapter 2 Literature Review 4 1.4.3 Chapter 3 Research Methods 4 1.4.4 Chapter 4 Experimental Results 5 1.4.5 Chapter 5 Conclusion 5 Chapter 2 Literature Review 6 2.1 Human Color Vision 6 2.2 Color Attribute 6 2.2.1 Hue 7 2.2.2 Brightness and Lightness 7 2.2.3 Colorfulness and Chroma 7 2.2.4 Saturation 8 2.3 CIE Color Systems 8 2.3.1 CIE XYZ 8 2.3.2 CIELAB 9 2.4 Color Space Conversion 10 2.5 Display Characterization 11 2.5.1 Cathode Ray Tube Display 13 2.5.2 Liquid Crystal Display 14 2.5.3 S-curve Model 14 2.5.4 Head-Mounted Display 14 2.6 Virtual Reality Application 15 2.6.1 Lighting in Virtual Reality 15 2.6.2 Types of Virtual Light Sources 16 2.6.3 Virtual Reality Limitations 18 2.7 Spatial Brightness 19 2.7.1 Definition 19 2.7.2 Light Distribution 20 Chapter 3 Research Methods 25 3.1 Observers 25 3.2 VR System 26 3.3 Virtual Environment Design 26 3.4 Types of Virtual Lights Sources 29 3.4.1 Spot Light 29 3.4.2 IES Spot Lights 30 3.4.3 Point Light 32 3.4.4 Rect Light 33 3.5 Reference Light Source and Light Intensities 35 3.5.1 Reference Light 35 3.5.2 Reference Light Intensities 36 3.6 Head Mounted Display Color Characterization 37 3.6.1 Procedures 37 3.6.2 Results 38 3.7 Experiment 1 40 3.7.1 Virtual Light Sources 40 3.7.2 Intensity Utilization Settings 41 3.7.3 Procedures 41 3.8 Experiment 2 42 3.8.1 Virtual Light Sources 43 3.8.2 Object Utilization Settings 43 3.8.3 Procedures 43 3.9 Experiment 3 46 3.9.1 Virtual Light Sources 46 3.9.2 Intensity Utilization Settings 47 3.9.3 Procedures 47 3.10 Experiment 4 49 3.10.1 Virtual Light Sources 49 3.10.2 Intensity Utilization Settings 50 3.10.3 Procedures 50 3.11 Data Analysis 52 3.11.1 Descriptive Statistics 52 3.11.2 Color Characterization 53 3.11.3 Brightness Matching 55 3.11.4 Observer Variability 55 3.11.5 Two-Way ANOVA 56 3.11.6 T-test 57 Chapter 4 Experimental Results 59 4.1 Experiment 1 59 4.1.1 Observer Reliability 59 4.1.2 Impact of Order of Reference Light on Brightness Matching 62 4.1.3 Visualization of the Brightness Matching Results for Experiment 1 66 4.1.4 Impact of Spot Light Shadows on Spatial Brightness 67 4.1.5 General Comparisons 69 4.2 Experiment 2 71 4.2.1 Observer Reliability 71 4.2.2 Visualization of the Brightness Matching Results for Experiment 2 73 4.2.3 Object Existence 74 4.2.4 Object-Included Calculation Results 75 4.2.5 Object Excluded Calculation Results 78 4.2.6 Impact of Object Existence on Spatial Brightness 81 4.3 Experiment 3 84 4.3.1 Observer Reliability 84 4.3.2 Impact of Order of Reference Light on Brightness Matching 86 4.3.3 Visualization of the Brightness Matching Results for Experiment 3 89 4.4 Experiment 4 91 4.4.1 Observer Reliability 91 4.4.2 Visualization of the Brightness Matching Results for Experiment 4 96 4.4.3 Impact of Spot Light Shadows on Spatial Brightness 97 4.4.4 General Comparison 99 4.4.5 Comparisons Between Point Lights 100 4.4.6 Comparisons between Spot Lights (Shadow Included) 104 4.4.7 Comparisons between Spot Lights (Shadow Excluded) 108 4.4.8 Impact of Spot Light Shadows on Spatial Brightness 112 4.4.9 Comparisons between Rect Light Variations 115 4.5 Discussion 117 Chapter 5 Conclusion 123 5.1 Main Findings 123 5.2 Limitations 124 5.3 Future Work 124 References 126 Appendices 130

    Al-Hiyari, N., & Jusoh, S. (2020). The Current Trends of Virtual Reality Application in Medical Education. 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6.
    Aya, K., Yamaguchi, H., Kato, M., Hara, N., Miki, Y., & Yoshizawa, N. (2015). The Spatial Brightness in the Non-uniform Illuminated Space.
    Aya, K., Yoshizawa, N., Yamaguchi, H., Hara, N., Kato, M., & Miki, Y. (2015). The relationship between the brightness of overall space and the brightness in the specific visual field in the non-uniform illuminated space. Proceedings of 28th CIE Session 2015, 1466–1470.
    Berns, R. S. (1996). Methods for characterizing CRT displays. Displays, 16(4), 173–182.
    Bhandary, S. K., Dhakal, R., Sanghavi, V., & Verkicharlai, P. K. (2021). Ambient light level varies with different locations and environmental conditions: Potential to impact myopia. PLoS ONE, 16(7). https://doi.org/10.1371/journal.pone.0254027
    Bullough, J. D., Radetsky, L. C., Besenecker, U. C., & Rea, M. S. (2014). Influence of spectral power distribution on scene brightness at different light levels. LEUKOS - Journal of Illuminating Engineering Society of North America, 10(1), 3–9. https://doi.org/10.1080/15502724.2013.827516
    Ceccato, V., & Martin, C. (2023). Who takes part in virtual reality studies? An analysis of lighting research. Sustainable Futures, 6. https://doi.org/10.1016/j.sftr.2023.100134
    Chamilothori, K., Chinazzo, G., Rodrigues, J., Dan-Glauser, E. S., Wienold, J., & Andersen, M. (2019). Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Building and Environment, 150, 144–155. https://doi.org/10.1016/j.buildenv.2019.01.009
    Chamilothori, K., Wienold, J., & Andersen, M. (2019). Adequacy of Immersive Virtual Reality for the Perception of Daylit Spaces: Comparison of Real and Virtual Environments. LEUKOS - Journal of Illuminating Engineering Society of North America, 15(2–3), 203–226. https://doi.org/10.1080/15502724.2017.1404918
    Chen, Y., Cui, Z., & Hao, L. (2019). Virtual reality in lighting research: Comparing physical and virtual lighting environments. Lighting Research and Technology, 51(6), 820–837. https://doi.org/10.1177/1477153518825387
    Cuttle, C. (2004). Brightness, lightness, and providing “a preconceived appearance to the interior.” Light. Res. Technol., 36, 201–214. https://doi.org/https://doi.org/10.1191/1365782804li115oa
    Ding, X., & Li, Z. (2022). A review of the application of virtual reality technology in higher education based on Web of Science literature data as an example. Front. Educ. , 7.
    Donn, M., & Sullivan, J. (2016). LIGHT DISTRIBUTION AND SPATIAL BRIGHTNESS: RELATIVE IMPORTANCE OF THE WALLS, CEILING, AND FLOOR. Lighting Research & Technology. https://www.researchgate.net/publication/307722943
    Duff, J., Kelly, K., & Cuttle, C. (2017). Spatial brightness, horizontal illuminance and mean room surface exitance in a lighting booth. Lighting Research and Technology, 49(1), 5–15. https://doi.org/10.1177/1477153515597733
    Fairchild, M. D. (2013). Color Appearance Models (3rd ed., Vol. 3). John Wiley & Sons, Ltd.
    Gil Rodríguez, R., Bayer, F., Toscani, M., Guarnera, D., Guarnera, G. C., & Gegenfurtner, K. R. (2022). Colour Calibration of a Head Mounted Display for Colour Vision Research Using Virtual Reality. SN Computer Science, 3(1). https://doi.org/10.1007/s42979-021-00855-7
    Hsieh, M. (2012). The energy-saving effect and prediction method under various illuminance distribution types. Building and Environment, 58, 145–151. https://doi.org/10.1016/j.buildenv.2012.07.001
    Hu, Z., Zhang, P., Wei, B., Ding, W., & Dai, Q. (2023). Assessment of spatial brightness for a visual field in interior spaces based on indirect corneal illuminance. Optics Express, 31(2), 997. https://doi.org/10.1364/oe.477637
    Ishida, T., & Ogiuchi, Y. (2002). Psychological Determinants of Brightness of a Space - Perceived Strength of Light Source and Amount of Light in the Space. J. Light Vis. Environ, 26(2), 29–35.
    Jakubiec, J. A., Mahic, A., Van Den Wymelenberg, K., & Inanici, M. (2016). Accurate Measurement of Daylit Interior Scenes Using High Dynamic Range Photography. 42–52. https://www.researchgate.net/publication/305703131
    Kato, M., Aya, K., Yamaguchi, H., Yoshizawa, N., Hara, N., Miki, Y., & Miki, Y. (2016). Evaluation Method of Spatial Brightness by Directional Diffusivity and Mean Luminance. Proceedings of CIE 2016 “Lighting Quality and Energy Efficiency.” CIE, 664–668.
    Kato, M., & Sekiguchi, K. (2005). “Impression of Brightness of a Space” Judged by Information from the Entire Space. J. Light Vis. Environ. , 29, 123–134.
    Kim, H.-S., Kim, E. J., & Kim, J. (2023). The Optimal Color Space for Realistic Color Reproduction in Virtual Reality Content Design. Electronics, 12(22), 4630. https://doi.org/10.3390/electronics12224630
    Kingdom, F. A. A. (2011). Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vision Research, 51(7), 652–673. https://doi.org/10.1016/j.visres.2010.09.012
    Kobayashi, S., Nakamura, Y., & Inui, M. (1998). Impression of Overall Brightness in a Non-Uniformly Illuminated Space. J. Light Vis. Environ., 22(1), 1_34-1_41. https://doi.org/https://doi.org/10.2150/jlve.22.1_34
    Krupinski, R. (2020). Virtual reality system and scientific visualisation for smart designing and evaluating of lighting. Energies, 13(20). https://doi.org/10.3390/en13205518
    Kwak, Y., & Macdonald, L. (2000a). Characterisation of a desktop LCD projector. Displays, 21, 179–194. www.elsevier.nl/locate/displa
    Kwak, Y., & Macdonald, L. (2000b). Characterisation of a desktop LCD projector. Displays, 21(5), 179–194. www.elsevier.nl/locate/displa
    Lindh, U. W., & Billger, M. (2021). Light distribution and perceived spaciousness: Light patterns in scale models. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212424
    Loe, D. (1999). Measuring the lit appearance of a space. Light and Lighting, 11, 35–37.
    Marzouk, M., ElSharkawy, M., & Mahmoud, A. (2022). Analysing user daylight preferences in heritage buildings using virtual reality. Building Simulation, 15(9), 1561–1576. https://doi.org/10.1007/s12273-021-0873-9
    Okajima, K., & Fujimotoi, S. (2008). Effect of Spatial-Frequency Distribution on Brightness Perception in Light Environment. J Illum Engng Inst Jpn, 92, 77–82.
    Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
    Pracki, P., & Krupiński, R. (2021). Brightness and uniformity perception of virtual corridor with artificial lighting systems. Energies, 14(2). https://doi.org/10.3390/en14020412
    Qi, Y., Yang, Z., Sun, W., Lou, M., Lian, J., Zhao, W., Deng, X., & Ma, Y. (2022). A Comprehensive Overview of Image Enhancement Techniques. Archives of Computational Methods in Engineering, 29(1), 583–607. https://doi.org/10.1007/s11831-021-09587-6
    Rea, M. S., Mou, X., & Bullough, J. D. (2016). Scene brightness of illuminated interiors. Lighting Research and Technology, 48(7), 823–831. https://doi.org/10.1177/1477153515581412
    Rockcastle, S. F., Chamilothori, K., & Andersen, M. (2017, September). An Experiment in Virtual Reality to Measure Daylight-Driven Interest in Rendered Architectural Scenes. Proceedings of the Building Simulation 2017: 15th Conference of IBPSA 2017.
    Scorpio, M., Laffi, R., Masullo, M., Ciampi, G., Rosato, A., Maffei, L., & Sibilio, S. (2020). Virtual reality for smart urban lighting design: Review, applications and opportunities. Energies, 13(15). https://doi.org/10.3390/en13153809
    Sliney, D. H. (2016). What is light? the visible spectrum and beyond. Eye (Basingstoke), 30(2), 222–229. https://doi.org/10.1038/eye.2015.252
    Society of Light and Lighting. (2002). Code for lighting. Butterworth-Heinemann.
    Sullivan, J. (2021). Measuring the Effects of Light Distribution on Spatial Brightness [Wellington School of Architecture]. https://doi.org/10.26686/wgtn.16713670.v1
    Sullivan, J., & Donn, M. (2018). MEASURING THE EFFECT OF LIGHT DISTRIBUTION ON SPATIAL BRIGHTNESS. 356–366. https://doi.org/10.25039/x44.2017.op49
    Syamimi, A., Gong, Y., & Liew, R. (2020). VR industrial applications―A singapore perspective. In Virtual Reality and Intelligent Hardware (Vol. 2, Issue 5, pp. 409–420). KeAi Communications Co. https://doi.org/10.1016/j.vrih.2020.06.001
    Tamura, N., Tsumura, N., & Miyake, Y. (2003). Masking model for accurate colorimetric characterization of LCD. Journal of the SID, 11(2), 333.
    Tiller, D. K., & Veitch, J. A. (1995). Perceived room brightness: Pilot study on the effect of luminance distribution. Light. Res. Technol, 27, 93–101. https://doi.org/https://doi.org/10.1177/14771535950270020401
    Toscani, M., Gil, R., Guarnera, D., Guarnera, G., Kalouaz, A., & Gegenfurtner, K. R. (2019). Assessment of OLED head mounted display for vision research with virtual reality. Proceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019, 738–745. https://doi.org/10.1109/SITIS.2019.00120
    Unreal Engine 5.3 Documentation. (2023, September). Https://Docs.Unrealengine.Com/5.3/En-US/. https://docs.unrealengine.com/5.3/en-US/light-types-and-their-mobility-in-unreal-engine/
    Veitch, J. A., Newsham, G. R., Mancini, S., & Arsenault, C. D. (2010). Lighting and Office Renovation Effects on Employee and Organizational Well-Being (No. NRC-IRC Research Report RR-306). In Lighting and office renovation effects on employee and organizational well-being. https://doi.org/10.4224/20374532
    Vittori, F., Pigliautile, I., & Pisello, A. L. (2021). Subjective thermal response driving indoor comfort perception: A novel experimental analysis coupling building information modelling and virtual reality. Journal of Building Engineering, 41. https://doi.org/10.1016/j.jobe.2021.102368
    Zaman, N., Sarker, P., & Tavakkoli, A. (2023). Calibration of head mounted displays for vision research with virtual reality. Journal of Vision, 23(6). https://doi.org/10.1167/JOV.23.6.7
    Zdravković, S., Economou, E., & Gilchrist, A. (2006). Lightness of an object under two illumination levels. Perception, 35(9), 1185–1201. https://doi.org/10.1068/p5446

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE