簡易檢索 / 詳目顯示

研究生: Sandeep Kumar Yadav
Sandeep Kumar Yadav
論文名稱: 適用於能量擷取電路之低電壓冷啟動積體電路設計
Integrated Circuit Design of A Low-Voltage Cold Start-up Circuit for Energy Harvesting System
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 姚嘉瑜
Chia-Yu Yao
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 80
中文關鍵詞: 超低壓環形振盪器低功耗電壓檢測器低壓電荷泵低壓冷啟動電路能量收集系統基於環形振盪器和電荷泵的啟動器
外文關鍵詞: Ultra Low-Voltage Ring Oscillator, Low-Power Voltage Detector, Low-Voltage Charge Pump, Low-Voltage Cold Start-up Circuit, Energy Harvesting System, Ring-Oscillator and Charge-Pump based starter
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Contents Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Background Knowledge of DC-DC Start-up Techniques for Energy Harvesting System .. 7 2.1 Survey of conventional start-up circuit . . . . . . . . . . . . . . . . . . . 8 2.1.1 Transformer Based start-up circuit . . . . . . . . . . . . . . . . . 8 2.1.2 Mechanically assisted start-up circuit . . . . . . . . . . . . . . . 10 2.1.3 Oscillator-driven Starters . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Bootstrapping and Resetting CMOS Starter . . . . . . . . . . . . 12 2.2 Comparison of Different Start-up Techniques . . . . . . . . . . . . . . . 13 3 Proposed A Low-Voltage Cold Start-up Circuit based on Ring-Oscillator and Charge-Pump Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Ring-Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Limitation of CMOS Inverter as Delay Element . . . . . . . . . . 18 3.2.2 Methodology to Achieve a low voltage supply ROSC . . . . . . . 21 3.3 Charge-Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 First Pumping Stage . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.3 Second and Third Pumping Stages . . . . . . . . . . . . . . . . . 29 3.3.4 Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Voltage Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Reset MOSFET (MRST), Low-side Switch (MLS) and High-side Switch(MHS) . . . .. 33 3.6 Power Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6.1 Conduction Loss in Boost Converter . . . . . . . . . . . . . . . . 35 3.6.2 Switching Loss in Boost Converter . . . . . . . . . . . . . . . . 36 3.6.3 Synchronization Loss (PS) in Boost Converter . . . . . . . . . . 37 3.7 Modified Architecture of Proposed Cold Start-up Circuit . . . . . . . . . 38 3.7.1 Leakage Issue and Modification in Charge Pump . . . . . . . . . 38 3.7.2 Non-Overlapping Clocks Generation Block . . . . . . . . . . . . 40 3.7.3 Low Voltage NAND Gate . . . . . . . . . . . . . . . . . . . . . 41 3.8 Voltage Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Measurement Procedure and results . . . . . . . . . . . . . . . . . . . . . . .45 4.1 Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 PCB Design to Perform Functionality and Performance Measurement . . . . 46 4.1.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Modified Cold Start-up circuit . . . . . . . . . . . . . . . . . . . . . . . 53 5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Comparison and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

[1] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mv-input batteryless boost converter for thermal energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 48, no. 4, pp. 1031–1041, 2013.
[2] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mv-input boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220 mv cold-start and 14.5 dbm, 915 mhz rf kick-start,” IEEE Journal of Solid–State Circuits, vol. 50, no. 8, pp. 1820– 1832, 2015.
[3] J. Katic, S. Rodriguez, and A. Rusu, “A dual-output thermoelectric energy harvesting interface with 86.6% peak efficiency at 30 uw and total control power of 160 nw,” IEEE Journal of Solid–State Circuits, vol. 51, no. 8, pp. 1928–1937, 2016.
[4] P.-H. Chen, K. Ishida, K. Ikeuchi, M. Xin Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mv step-up converter by capacitor pass-on scheme and vth-tuned oscillator with fixed charge programming,” IEEE Journal of Solid–State Circuits, vol. 47, no. 5, pp. 1252–1260, 2012.
[5] S. Lineykin and S. Ben-Yaakov, “Modeling and analysis of thermoelectric modules,” vol. 43, no. 2, pp. 505–512, 2007.
[6] J.-P. Im, S.-W. Wang, S.-T. Ryu, and G.-H. Cho, “A 40 mv transformer-reuse selfstartup boost converter with mppt control for thermoelectric energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 47, no. 12, pp. 3055–3067, 2012.
[7] Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectric energyharvesting interface circuit with 35 mv startup voltage,” IEEE Journal of Solid–State Circuits, vol. 46, no. 1, pp. 486–487, 2011.
[8] E. J. Carlson, L. Strunz, and B. P. Otis, “A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 45, no. 4, pp. 741–750, 2010.
[9] V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, “Thermoelectric converters of human warmth for self-powered wireless sensor nodes,” IEEE Sensors Journal, vol. 7, no. 5, pp. 650–657, 2007.
[10] T. Ikeda, E. S. Toberer, V. A. Ravi, S. M. Haile, and G. J. Snyder, “Lattice thermal conductivity of self-assembled pbte-sb 2 te 3 composites with nanometer lamellae,” in 2007 26th International Conference on Thermoelectrics, pp. 1–4, 2007.
[11] J. M. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1203–1207, 1997.
[11] J. M. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1203–1207, 1997.
[12] A. A. Blanco and G. A. Rincón-Mora, “Bootstrapping and resetting cmos starter for thermoelectric and photovoltaic chargers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 2, pp. 156–160, 2017.
[13] A. A. Blanco and G. A. Rincón-Mora, “On-chip starter circuit for switched-inductor dc-dc harvester systems,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2723–2726, 2013.
[14] P. Spies, M. Pollak, and G. Rohmer, “Energy harvesting for mobile communication devices,” in INTELEC 07-29th International Telecommunications Energy Conference, pp. 481–488, IEEE, 2007.
[15] Y.-K. Teh and P. K. Mok, “Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mv self-startup voltage and 74% power efficiency,” IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2694– 2704, 2014.
[16] T. Niiyama, P. Zhe, K. Ishida, M. Murakata, M. Takamiya, and T. Sakurai, “Dependence of minimum operating voltage (v ddmin) on block size of 90-nm cmos ring oscillators and its implications in low power dfm,” in 9th International Symposium on Quality Electronic Design (isqed 2008), pp. 133–136, IEEE, 2008.
[17] H.-Y. Tang, P.-S. Weng, P.-C. Ku, and L.-H. Lu, “A fully electrical startup batteryless boost converter with 50mv input voltage for thermoelectric energy harvesting,” in 2012 Symposium on VLSI Circuits (VLSIC), pp. 196–197, IEEE, 2012.
[18] S. Bose and M. L. Johnston, “A stacked-inverter ring oscillator for 50 mv fullyintegrated cold-start of energy harvesters,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2018.
[19] J. D. Meindl and J. A. Davis, “The fundamental limit on binary switching energy for terascale integration (tsi),” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1515–1516, 2000.
[20] S. Bose, T. Anand, and M. L. Johnston, “Integrated cold start of a boost converter at 57 mv using cross-coupled complementary charge pumps and ultra-low-voltage ring oscillator,” IEEE journal of solid-state circuits, vol. 54, no. 10, pp. 2867–2878, 2019.
[21] N. Lotze and Y. Manoli, “A 62 mv 0.13 µm cmos standard-cell-based design technique using schmitt-trigger logic,” IEEE journal of solid-state circuits, vol. 47, no. 1, pp. 47–60, 2011.
[22] J. F. Dickson, “On-chip high-voltage generation in mnos integrated circuits using an improved voltage multiplier technique,” IEEE Journal of solid-state circuits, vol. 11, no. 3, pp. 374–378, 1976.
[23] K.-H. Choi, J.-M. Park, J.-K. Kim, T.-S. Jung, and K.-D. Suh, “Floating-well charge pump circuits for sub-2.0 v single power supply flash memories,” in Symposium 1997 on VLSI Circuits, pp. 61–62, IEEE, 1997.
[24] C. Lauterbach, W. Weber, and D. Romer, “Charge sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps,” IEEE Journal of solid-state circuits, vol. 35, no. 5, pp. 719–723, 2000.
[25] J. Shin, I.-Y. Chung, Y. J. Park, and H. S. Min, “A new charge pump without degradation in threshold voltage due to body effect [memory applications],” IEEE Journal of solid-state circuits, vol. 35, no. 8, pp. 1227–1230, 2000.
[26] J.-T. Wu and K.-L. Chang, “Mos charge pumps for low-voltage operation,” IEEE Journal of solid-state circuits, vol. 33, no. 4, pp. 592–597, 1998.
[27] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage cmos processes,” IEEE Journal of solid-state circuits, vol. 41, no. 5, pp. 1100–1107, 2006.
[28] M. Seok, G. Kim, D. Blaauw, and D. Sylvester, “A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 v,” IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2534–2545, 2012.
[29] M. R. Shokrani, M. Khoddam, M. N. B. Hamidon, N. A. Kamsani, F. Z. Rokhani, and S. B. Shafie, “An rf energy harvester system using uhf micropower cmos rectifier based on a diode connected cmos transistor,” The Scientific World Journal, vol. 2014, 2014.
[30] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with mppt and single inductor,” IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, 2012.
[31] S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan, “A 1.1 nw energy-harvesting system with 544 pw quiescent power for next-generation implants,” IEEE journal of solid-state circuits, vol. 49, no. 12, pp. 2812–2824, 2014.
[32] Y.-H. Weng, H.-W. Tsai, and M.-D. Ker, “Design of charge pump circuit in lowvoltage cmos process with suppressed return-back leakage current,” in 2010 IEEE International Conference on Integrated Circuit Design and Technology, pp. 155– 158, IEEE, 2010.
[33] A. Das, Y. Gao, and T. T.-H. Kim, “A 220-mv power-on-reset based self-starter with 2-nw quiescent power for thermoelectric energy harvesting systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 1, pp. 217–226, 2016
[34] H. Fuketa, T. Matsukawa, et al., “Fully integrated, 100-mv minimum input voltage converter with gate-boosted charge pump kick-started by lc oscillator for energy harvesting,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 4, pp. 392–396, 2016.
[35] M. Chen, H. Yu, G. Wang, and Y. Lian, “A batteryless single-inductor boost converter with 190 mv self-startup voltage for thermal energy harvesting over a wide temperature range,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 889–893, 2018.
[36] M. Nishi, K. Matsumoto, N. Kuroki, M. Numa, H. Sebe, R. Matsuzuka, O. Maida, D. Kanemoto, and T. Hirose, “A 34-mv startup ring oscillator using stacked body bias inverters for extremely low-voltage thermoelectric energy harvesting,” in 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 38– 41, IEEE, 2020.

無法下載圖示 全文公開日期 2027/01/19 (校內網路)
全文公開日期 2027/01/19 (校外網路)
全文公開日期 2027/01/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE