簡易檢索 / 詳目顯示

研究生: 陳順評
Nathaniel Alvin
論文名稱: Multi-Resource Allocation and Leveling in Multi-Project Scheduling Problem with Hybrid-Chromosome NSGA-II
Multi-Resource Allocation and Leveling in Multi-Project Scheduling Problem with Hybrid-Chromosome NSGA-II
指導教授: 楊亦東
I-Tung Yang
口試委員: 呂守陞
Sou-Sen Leu
楊智斌
Jyh-Bin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 104
外文關鍵詞: Resource Leveling, Multi-Project Scheduling Problem, Hybrid-Chromosome NSGA-II
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Multi-resource allocation and leveling in multi-project (MR-AL-MP) scheduling refers to the attempt of producing a project schedule with minimum project duration and maximum resource utilization while complying with all precedence and resource availability constraints in a multi-project environment that involves multiple types of resources. This study proposes an optimization model that integrates both resource allocation and leveling models into a unified framework. The model employs the release and rehire (RRH) or resource idle days (RID) and resource intensity (RI) as the resource leveling metrics. The present study develops a modified version of the well-known NSGA-II, called Hybrid-Chromosome NSGA-II, as the optimization algorithm. To validate the performance of the proposed model and algorithm, they are applied to two case studies. The performance is compared with two benchmark metaheuristic algorithms: Multi-Objective Particle Swam Optimization (MOPSO) and Multi-Objective Symbiotic Organisms Search (MOSOS). From the results obtained, it is shown that the proposed model and algorithm are able to produce a set of non-dominated solutions to study the feasible trade-off relationships between the objectives: project duration, RRH or RID, and RI. Furthermore, the Hybrid-Chromosome NSGA-II is superior to MOPSO and MOSOS in terms of the quality, spread, and diversity of the solutions.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES viii LIST OF ABBREVIATIONS x CHAPTER 1: INTRODUCTION 1 1.1. Research Background 1 1.2. Research Objective 2 1.3. Research Scope and Limitations 3 1.4. Research Outline 4 CHAPTER 2: LITERATURE REVIEW 5 2.1. Project Scheduling 5 2.2. Resource Allocation Model 6 2.3. Resource Leveling Model 8 2.4. Multi-Resource Allocation and Leveling in Multi-Project Scheduling Problem 16 2.5. Multi-Objective Optimization 19 2.5.1 Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 21 2.5.2 Multi-Objective Particle Swarm Optimization (MOPSO) 23 2.5.3 Multi-Objective Symbiotic Organisms Search (MOSOS) 24 2.6. Summary 26 CHAPTER 3: RESEARCH METHODOLOGY 27 3.1. Multi-Resource Allocation and Leveling in Multi-Project Scheduling Model 27 3.2. Hybrid-Chromosome NSGA-II Proposed Framework 28 3.2.1 Initialization 31 3.2.2 Fitness Evaluation 31 3.2.3 Non-Dominated and Crowding Distance Sorting 35 3.2.4 Parent Selection 38 3.2.5 Offspring Generation 38 3.2.6 New Parent Population Generation 42 3.3. Performance Validation 42 CHAPTER 4: CASE STUDY 44 4.1. Performance Validation with Case Study 1 44 4.2. Performance Validation with Case Study 2 57 4.3. Decision Making 77 4.4. Summary 77 CHAPTER 5: CONCLUSIONS 79 5.1. Conclusions 79 5.2. Further Research Suggestions 79 REFERENCES 81 APPENDIX 1 84

    Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of operations Research, 102(1), 83-109.
    Bell, C. E., & Han, J. (1991). A new heuristic solution method in resource‐constrained project scheduling. Naval Research Logistics (NRL), 38(3), 315-331.
    Chan, W. T., Chua, D. K., & Kannan, G. (1996). Construction resource scheduling with genetic algorithms. Journal of construction engineering and management, 122(2), 125-132.
    Chen, P. H., & Shahandashti, S. M. (2009). Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints. Automation in Construction, 18(4), 434-443.
    Chen, P. H., & Weng, H. (2009). A two-phase GA model for resource-constrained project scheduling. Automation in Construction, 18(4), 485-498.
    Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112.
    Coello, C. C., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1051-1056). IEEE.
    Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    Easa, S. M. (1989). Resource leveling in construction by optimization. Journal of construction engineering and management, 115(2), 302-316.
    Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE.
    Eirgash, M. A. (2020). Resource Allocation and Leveling in Construction Management Projects with Resource Histogram. American Journal of Engineering and Technology Management, 5(6), 91-95.
    El-Rayes, K., & Jun, D. H. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172-1180.
    Guo, Y., Li, N., & Ye, T. (2009). Multiple resources leveling in multiple projects scheduling problem using particle swarm optimization. In 2009 Fifth International Conference on Natural Computation (Vol. 3, pp. 260-264). IEEE.
    Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of construction engineering and management, 125(3), 167-175.
    Heon Jun, D., & El-Rayes, K. (2011). Multiobjective optimization of resource leveling and allocation during construction scheduling. Journal of construction engineering and management, 137(12), 1080-1088.
    Kannimuthu, M., Raphael, B., Ekambaram, P., & Kuppuswamy, A. (2019). Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem. Engineering, Construction and Architectural Management.
    Khanzadi, M., Kaveh, A., Alipour, M., & Karimi Aghmiuni, H. (2016). Application of CBO and CSS for resource allocation and resource leveling problem. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(1), 1-10.
    Kim, J. L., & Ellis Jr, R. D. (2008). Permutation-based elitist genetic algorithm for optimization of large-sized resource-constrained project scheduling. Journal of construction engineering and management, 134(11), 904-913.
    Koulinas, G. K., & Anagnostopoulos, K. P. (2013). A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities. Automation in Construction, 31, 169-175.
    Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Annals of Operations Research, 102(1), 263-286.
    Majazi Dalfard, V., & Ranjbar, V. (2012). Multi-projects scheduling with resource constraints & priority rules by the use of simulated annealing algorithm. Tehnički vjesnik, 19(3), 493-499.
    Nachar, N. (2008). The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutorials in quantitative Methods for Psychology, 4(1), 13-20.
    Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005). Pareto multi objective optimization. In Proceedings of the 13th international conference on, intelligent systems application to power systems (pp. 84-91). IEEE.
    Panda, A., & Pani, S. (2016). A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46, 344-360.
    Ponz-Tienda, J. L., Salcedo-Bernal, A., Pellicer, E., & Benlloch-Marco, J. (2017). Improved adaptive harmony search algorithm for the resource leveling problem with minimal lags. Automation in Construction, 77, 82-92.
    Popescu, C. M., & Charoenngam, C. (1995). Project planning, scheduling, and control in construction: An encyclopedia of terms and applications. John wiley & Sons.
    Son, J., & Mattila, K. G. (2004). Binary resource leveling model: Activity splitting allowed. Journal of construction engineering and management, 130(6), 887-894.
    Son, J., & Skibniewski, M. J. (1999). Multiheuristic approach for resource leveling problem in construction engineering: Hybrid approach. Journal of construction engineering and management, 125(1), 23-31.
    Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
    Sörensen, K., & Glover, F. (2013). Metaheuristics. Encyclopedia of operations research and management science, 62, 960-970.
    Tran, D. H., Cheng, M. Y., & Prayogo, D. (2016). A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94, 132-145.
    Varun Kumar, S. G., & Panneerselvam, R. (2017). A study of crossover operators for genetic algorithms to solve VRP and its variants and new sinusoidal motion crossover operator. International Journal of Computational Intelligence Research, 13(7), 1717-1733.
    Verma, S., Pant, M., & Snasel, V. (2021). A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems. IEEE Access, 9, 57757-57791.
    Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G., & Verstichel, J. (2016). The multi-mode resource-constrained multi-project scheduling problem. Journal of Scheduling, 19(3), 271-283.
    Wu, Z., Zhang, L., Wang, Y., & Wang, K. (2008). Optimization for multi-resource allocation and leveling based on a self-adaptive ant colony algorithm. In 2008 International Conference on Computational Intelligence and Security (Vol. 1, pp. 47-51). IEEE.
    Zhang, H., Li, H., & Tam, C. M. (2006). Permutation-based particle swarm optimization for resource-constrained project scheduling. Journal of computing in civil engineering, 20(2), 141-149.
    Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-constrained project scheduling. Automation in construction, 14(3), 393-404.
    Zhao, S. L., Liu, Y., Zhao, H. M., & Zhou, R. L. (2006). GA-based resource leveling optimization for construction project. In 2006 International Conference on Machine Learning and Cybernetics (pp. 2363-2367). IEEE.

    無法下載圖示 全文公開日期 2025/02/06 (校內網路)
    全文公開日期 2025/02/06 (校外網路)
    全文公開日期 2025/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE