簡易檢索 / 詳目顯示

研究生: 葉信佑
Hsin-yo Yeh
論文名稱: 模型預測控制於機電系統之設計與實作
Design and Implementation of Model Predictive Control for Mechatronic Systems
指導教授: 林紀穎
Chi-ying Lin
口試委員: 姜嘉瑞
Chia-jui Chiang
林仲廉
Jonq-lan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 模型預測控制快速模型預測控制類神經網路振動控制
外文關鍵詞: Model predictive control, Fast MPC, Neural network, Vibration control
相關次數: 點閱:329下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文討論的範疇主要可分為兩大部分,分別是結合類神經求解器之模型預測控制(Neunal Network Based Model Predictive Control)研究,以及模型預測控制於主動抑振平台的相關研究。自80年代以來,模型預測控制因為其能夠處理多變數問題以及限制問題的能力而相當受到歡迎,但受限於其運算過程的複雜度,使得其一直難以實現於較高取樣率的機電伺服平台,儘管現今微處理器計算能力提升之後已增加了其實現於機電伺服系統的可能性;但是卻仍然容易因為過大的計算量而使實現上取樣率低落的問題產生。因此為了簡化其演算過程,並且持續保有主要特性(如多變數及限制問題的處理能力),許多最佳化領域的專家學者也開始紛紛投入發展快速模型預測控制理論(Fast Model Predictive Control)的行列,本文的第一部分即為參考快速模型預測控制理論的其中一種,使用較易實現的?簡化雙層類神經網路?來進行最佳化問題的求解,並討論其對於控制器計算量縮減的程度。在主動抑振方面的研究部分,早在80、90年代模型預測控制應用於化工產業時期,就已經有許多干擾抑制方面的研究出現,主要是將干擾估測器及干擾訊號的內部模型結合於其中,並於最佳化過程當中同時考慮受控系統之最終狀態,使其獲得干擾抑制的能力;但是由於此種作法在機電伺服系統的干擾抑制研究卻相對少見,因此本文的第二部分即為使用以往化工產業之干擾抑制方法,並將此具有干擾抑制能力的模型預測控制應用於主動抑振平台,以驗證其抑制能力。


Model Predictive Control (MPC) is an advanced optimal control method which can effectively deal with multi-variable process control systems with constraints. Since past several decades this technique has been very popular in the chemical process control community but is rarely seen in mechatronics research field due to its inherently complicated optimization process and limited computational resources. Recently the advance of microprocessor technology has provided a potential solution to release this constraint and made implementation of MPC on fast dynamic systems a possible task. However, as the interested system becomes complicated with more constraints, purely relying on using extremely fast and expensive hardware for MPC implementation may not be a practical solution for general engineers. In light of this, developing MPC algorithms such that the optimization process can be streamlined with reduced computational burden as much as possible, namely Fast MPC technique, has drawn much attention from researchers in this sense. The first part of thesis is to evaluate one Fast MPC method using a recurrent neural network developed by Prof. Jun Wang in the Chinese University of Hong Kong. The method is applied as an optimizer for Repetitive Model Repetitive Control (RMPC), an MPC algorithm which contains a repetitive controller for periodic signal tracking or rejection. Experimental results on a piezo-acutated system for tracking control are provided. The second part of thesis is to investigate the applicability of MPC/RMPC on vibration control of active structures. Some initial results by an experimental study are provided with comments.

致謝I 中文摘要I 英文摘要II 目錄III 圖目錄V 表目錄IX 1 緒論 1.1 前言 1.2 研究動機與目的 1.3 文獻回顧 1.4 本文架構 2 模型預測控制理論 2.1 基本概念與原理 2.2 預測區間與控制區間之概念 2.3 成本函數 2.4 二次規劃(Quadratic Programming) 2.5 簡化雙層類神經(Simplified Dual Neural Network) 3 模型預測控制器設計 3.1 模型預測控制器建立 3.2 結合狀態觀測器之模型預測控制器設計 3.3 結合積分控制之模型預測控制器設計 3.4 結合反覆控制器之模型預測控制器設計 3.4.1 反覆控制理論 3.4.2 結合反覆控制器於模型預測控制器 3.5 結合干擾估測器與干擾訊號內部模型之模型預測控制器設計 4 模擬與實驗結果 4.1 實驗硬體與軟體架構 4.2 系統識別 4.3 模型預測控制之模擬與實驗結果 4.4 使用類神經求解之積分模型預測控制模擬與實驗 4.4.1 各項參數調整之實驗結果與分析討論 4.4.2 使用不同求解器之實驗結果與分析討論 4.5 使用類神經求解之反覆模型預測控制模擬與實驗 4.5.1 各項參數調整之實驗結果與分析討論 4.5.2 使用不同求解器之實驗結果與分析討論 4.6 使用結合最終狀態之反覆模型預測控制模擬與實驗 5 結論與未來發展

[1] S. J. Qin and T. A. Badgwell (2003). A survey of industrial model predictive
control technology. Control Engineering Practice, 11 (7), pp 733-764.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert (2000). Constrained
model predictive control: stability and optimality. Automatica, 36,
pp 789-814.

[3] C. Y. Lin and Y. C. Liu (2011). Precision Tracking Control and Constraint
Handling of Mechatronic Servo Systems Using Model Predictive Control.
IEEE/ASME Transactions on Mechatronics (99), pp 1-13.

[4] Y. Pan and Jun. Wang (2008). Two neural network approaches to model predictive
control. in American Control Conference.

[5] Y. Pan and J. Wang (2008). Robust Model Predictive Control Using a
Discrete-Time Recurrent Neural Network. in Processings of The 5th International
Symposium on Neural Networks: Advances in Neural Networks, pp
883-892.

[6] Y. Pan and J. Wang (2008). Nonlinear model predictive control using a recurrent
neural network. in Processings of International Joint Conference on
Neural Networks, pp 2297-2302.

[7] K. R. Muske and J. B. Rawlings (1993). Model predictive control with linear
models. American Institute of Chemical Engineers, 39 (2), pp 262-287.

[8] G. Pannocchia and J. B. Rawlings (2003). Disturbance models for offset-free
model-predictive control. American institute of Chemical Engineers, 49 (2),
pp 426-437.

[9] M. Tomizuka, T. C. Tsao and K. K. Chew (1989). Analysis and Synthesis
of Discrete-Time Repetitive Controllers. IEEE/ASME Journal of Dynamic
Systems, Measurement, and Control, 111 (3), pp 353-358.

[10] D. Luenberger (1969). Optimization by vector space methods. Wiley: New
York.

[11] T. A. Johansen and A. Grancharova (2003). Approximate explicit constrained
linear model predictive control via orthogonal search tree. IEEE Transactions
on Automatic Control, 48 (5), pp 810-815.

[12] M. Kvasnica, P. Grieder, M. Baotic and M. Morari (2004). Multi-Parametric
Toolbox (MPT). Hybrid Systems: Computation and Control, Springer
Berlin, pp 121-124.

[13] A. Wills, D. Bates, A. Fleming, B. Ninness and R. Moheimani (2005). Application
of MPC to an active structure using sampling rates up to 25kHz. in
IEEE Decision and Control Conference, pp 3176-3181.

[14] J. Richalet, A. Rault, J. L. Testud and J. Papon (1978). Model predictive
heuristic control: Applications to industrial processes. Automatica, 14 (5),
pp 413-428.

[15] P. Ortner and L. del Re (2007). Predictive Control of a Diesel Engine Air
Path. IEEE Transactions on Control System Technology, 15 (3), pp 449-456.

[16] C. N. Lu, C.C. Tsai, M. C. Tsai, K. V. Ling, and W. S. Yao (2007). Application
of model predictive control to parallel-type double inverted pendulum
driven by a linear motor. in IEEE Industrial Electronics Society Conference,
pp 2904-2909.

[17] D. Gu and H. Hu (2004). Model predictive control for simultaneous robot
tracking and regulation. in Proceedings of International Conference on Intelligent
Mechatronics and Automation, pp 743-749.

[18] G. Klancar and I. Skrjanc (2007). Tracking-error model-based predictive
control for mobile robots in real time. Robotics and Autonomous Systems,
55 (6), pp 460-469.

[19] E. R. Panier (1987). An active set method for solving linearly constrained
nonsmooth optimization problems. Mathematical Programming, 37 (3), pp
269-292.

[20] Y. Nesterov and A. Nemirovskii (1987). Interior-point polynomial algorithms
in convex programming. SIAM: Studies in Applied Mathematics.

[21] C. Hildreth (1957). A quadratic programming procedure. Naval Research
Logistics Quarterly, 4 (1), pp 79-85.

[22] J. J. Hopfield and D. W. Tank (1985). Neural computation of decisions in
optimization problems. Biological Cybernetics, 52 (3), pp 141-152.

[23] C. Y. Maa and M. A. Shanblatt (1992). Linear and quadratic programming
neural network analysis. IEEE Transactions on Neural Networks, 3 (4), pp
580-594.

[24] D. Dong, T. J. McAvoy and E. Z. Evanghelos (1996). Batch-to-batch optimization
using neural network models. Industrial and Engineering Chemistry
Research, 35 (7), pp 2269-2276.

[25] A. Bouzerdoum and T. R. Pattison (1993). Neural network for quadratic optimization
with bound constraints. IEEE Transactions on Neural network,
4 (2), pp 293-304.

[26] Y. S. Xia (1996). A new neural network for solving linear and quadratic
programming problems. IEEE Transactions on Neural Networks, 7 (6), pp
1544-1548.

[27] S. D. Jean, B. Naveen and J. M. Thomas (1991). Neural net based model
predictive control. International Journal of Control, 54 (6), pp 1453-1468.

[28] J. G. Ortega and E. F. Camacho (1994). Neural network MBPC for mobile
robot path tracking. Robotics and Computer-Integrated Manufacturing,
11 (4), pp 271-278.

[29] L. X. Wang and F. Wan (2001). Structured neural networks for constrained
model predictive control. Automatica, 37 (8), pp 1235-1243.

[30] S. B. Liu and J.Wang (2006). A simplified dual neural network for quadratic
programming with its KWTA application. IEEE Transactions on Neural Networks,
17 (6), pp 1500-1510.

[31] A. Bemporad, M. Morari, V. Dua and E. N. Pistikopoulos (2000). The explicit
solution of model predictive control via multiparametric quadratic programming.
in Proceedings of American Control Conference.

[32] A. Bemporad, F. Borrelli and M. Morari (2002). Model predictive control
based on linear programming the explicit solution. IEEE Transactions on
Automatic Control, 47 (12), pp 1974-1985.

[33] W. Yang and S. Boyd (2010). Fast model predictive control using online
optimization. IEEE Transactions on Control System Technology, 18 (2), pp
267-278.

[34] C. E. Garciaa and A.M.Morshedia (1986). Quadratic Programming Solution
of Dynamic Matrix Control. Chemical Engineering Communications, 46 (3),
pp 73-87.

[35] J. P. Navratil, K. Y. Lim and D. G. Fisher (1988). Disturbance Feedback
in Model Predictive Control Systems. Model-Based Process Control-
Proceedings of the IFAC Workshop.

[36] P. Marquis and J. P. Broustail (1989). SMOC, a bridge between State Space
and Model Predictive Controllers: Application to the automation of a hydrotreating
unit. Model-Based Process Control-Proceedings of the IFAC
Workshop.

[37] N. L. Ricker (1990). Model predictive control with state estimation. Industrial
and Engineering Chemistry Research, 29 (3), pp 374-382.

[38] J. H. Lee, M. Morari and C. E. Garcia (1994). State-space interpretation of
model predictive control. Automatica, 30 (4), pp 707-717.

[39] J. H. Lee and N. L. Ricker (1994). Extended Kalman Filter Based Nonlinear
Model Predictive Control. Industrial and Engineering Chemistry Research,
33 (6), pp 1530-1541.

[40] K. S. Lee, I. S. Chin, H. J. Lee and J. H. Lee (1999).Model predictive control
technique combined with iterative learning for batch processes. American
institute of Chemical Engineers, 45 (10), pp 2175-2187.

[41] J. H. Lee, S. Natarajan and K. S. Lee (2001). A model-based predictive control
approach to repetitive control of continuous processes with periodic operations.
Process Control, 11 (2), pp 195-207.

[42] K. W. Lee, J. H. Lee, D. R. Yang and A. W. Mahoney (2002). Integrated
run-to-run and on-line model-based control of particle size distribution for
a semi-batch precipitation reactor. Computers and Chemical Engineering,
26 (7), pp 1117-1131.

[43] A. G.Wills andW. P. Heath (2003). An exterior/interior-point approach to infeasibility
in model predictive control. in Proceedings of Decision and Control
Conference.

[44] A. G. Wills and W. P. Heath (2005). Application of barrier function based
model predictive control to an edible oil refining process. Process Control,
15 (2), pp 183-200.

[45] A. G. Wills, D. Bates, A. J. Fleming, B. Ninness and S. O. R. Moheimani
(2008). Model Predictive Control Applied to Constraint Handling in Active
Noise and Vibration Control. IEEE Transactions on Control Systems Technology,
16 (1), pp 3-12.

[46] P. Boscariol, A. Gasparetto and V. Zanotto (2010). Model Predictive Control
of a Flexible Links Mechanism. Intelligent and Robotic Systems, 58 (2), pp
125-147.

[47] O. A. Dahunsi, J. O. Pedro and O. T. Nyandoro (2009). Neural network-based
model predictive control of a servo-hydraulic vehicle suspension system. in
AFRICON Conference.

[48] M. Gang, K. Ahsan and J. C. Kantor (2001). Model Predictive Control
of Structures under Earthquakes using Acceleration Feedback. Engineering
Mechanics, 128 (5), pp 574-586.

[49] L. Y. Lu and G. L. Lin (2008). Predictive control of smart isolation system for
precision equipment subjected to near-fault earthquakes. Engineering Structures,
30 (11), pp 3045-3064.

[50] R. B. Evans, J. S. Griesbach and W. C. Messner (1999). Piezoelectric microactuator
for dual stage control. IEEE Transactions on Magnetics, 35 (2),
pp 977-982.

[51] P. Ge and M. Jouaneh (1996). Tracking control of a piezoceramic actuator.
IEEE Transactions on Control Systems Technology, 4 (3), pp 209-216.

[52] H. Jung, J. Y. Shim and D. Gweon (2001). Tracking control of piezoelectric
actuators. Nanotechnology, 12 (1), pp 14-20.

[53] J. C. Shen,W. Y. Jywe, H. K. Chiang and Y. L. Shu (2008). Precision tracking
control of a piezoelectric-actuated system. Precision Engineering, 32 (2), pp
71-78.

[54] D. Liang and Y. H. Tan (2008). Modeling of rate-dependent hysteresis in
piezoelectric actuators. in Control Applications Conference.

[55] R.W. Shephard (1981). Cost and Production Function. Spring-Verlag: Berlin
and New York.

[56] M. Frank and P. Wolfe (1956). An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3 (1-2), pp 95-110.

[57] D. P. Bertsekas (1995). Nonlinear Programming. Athena Scientific.

[58] H. Chen and F. Allgower (1998). A quasi-infinite nonlinear model predictive
control scheme with guaranteed stability.Automatica, 34 (10), pp 1205-1217.

[59] T. S. Low and W. Guo (1995). Modeling of a three-layer piezoelectric bimorph
beamwith hysteresis.Microelectromechanical Systems, 4 (4), pp 230-
237.

[60] CEDRAT TECHNOLOGIES (2007). Piezo Actuators, Drivers and Controls
Cataloque CEDRAT TECHNOLOGIES.

[61] M. Tomizuka (1987). Zero Phase Error Tracking Algorithm for Digital Control.
IEEE/ASME Journal of Dynamic Systems, Measurement, and Control,
109 (1), pp 65-68.

[62] L. Ljung and E. J. Ljung (1987). System Identification: Theory for The User.
Prentice-Hall.

[63] A. Preumont (2002). Vibration Control of Active Structures: An Introduction.
Springer.

[64] S. O. R. Moheimani and A. J. Fleming (2006). Piezoelectric Transducer for
Vibration Control and Sampling, Springer.

[65] W. East and B. Lantz (2005). Notch Filter Design.

無法下載圖示 全文公開日期 2016/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2016/07/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE