簡易檢索 / 詳目顯示

研究生: 李信皇
Hsin-Huang Lee
論文名稱: 應用串聯彈性致動器於機器人復建系統之實現
Series Elastic Actuator Based Robotic Rehabilitation System Implementation
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 傅立成
Li-Chen Fu
宋開泰
Kai-Tai Song
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 串聯彈性致動器叢集式復健機台復健機器人適應性控制
外文關鍵詞: series elastic actuator, cluster rehabilitation machine, rehabilitation robots, adaptive control
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,隨著醫療技術之日益進步,以及機器人技術之蓬勃發展,於醫院的復健中心,已經有不少復健機器甚至是復健機器人來輔助患者之復健過程,同時減少物理治療師為病患進行復健過程之體力付出與負擔。透過尖端科技之發展,復健機器人可以讓患者之復健動作得以更精準且有效率地達成復健之目標。有鑑於此,本論文應用串聯彈性致動器(Series Elastic Actuator,SEA),實現了針對老年人活化肌群能力之復健機器人。串聯彈性致動器是廣泛地被應用在剛性致動器之人機互動方面的研究,例如力量控制、扭力控制、低阻抗、容忍衝擊力等相關實驗。針對SEA模組之研發,透過兩組致動器以及兩組拉伸彈簧為其基本架構,透過彈簧之變形量轉換為扭力控制之方式,提供人機互動過程中之過載保護機制。實務上,以傳統比例積分微分(Proportional-Integral-Derivative,PID)控制器搭配適應性控制演算法,來達成關節致動器之軌跡追蹤以及復健效能評估。同時,此一叢集式硬體平台之開發與系統整合搭配使用者介面(Graphic User Interface,GUI),提供受試者透過語音提示以及系統指示訊號,完成相關復健動作並且紀錄受試者之運動軌跡。最後,依據模擬和實驗結果成功地驗證所提出的SEA應用於復建機器人之可行性以及有效性。


Thanks to state-of-the-art medical technologies and the advances of robotic technologies, rehabilitation robots have gained popularity in recent years. There are lots of rehabilitation machines or robots playing an essential role in ameliorating the performance of rehabilitation process and helping people to recover their ability through muscle activation. On the other hand, rehabilitation robots have been proven to reduce the cost of physiotherapists, such as time and physical labor. In this thesis, the series elastic actuator (SEA) design was utilized to realize a rehabilitation robot for Produce Outcome to Worthwhile for the Elder Reactivation (POWER). The SEA design is known to offer ameliorated advantages over stiff actuators for human–robot interaction, such as torque control, force control, tolerance to shock and low impedance. Practically, implemented with the approaches of conventional proportional-integral-derivative (PID0 control and adaptive control to joint actuators, is used to track specific training trajectories with the considerations of different loading of forces. In this thesis, an intelligent cluster rehabilitation machine was developed by integrating the functions provided from four commercial POWER machines with a user graphic interface (GUI), providing users to finish the exercise by following the system guidance consisting of voice hint and information visualization. The system will record the training trajectories after users finish the training. Finally, the simulation and experiment results successfully validated the feasibility and effectiveness of the proposed SEA-based POWER rehabilitation machine.

指導教授推薦書 i 口試委員會審定書 ii 致謝 iii 摘要 iv Abstract v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 5 1.4 論文貢獻 6 第二章 文獻回顧 7 2.1 國內外復健輔助設備之研究與開發 7 2.2 串聯彈性致動器設計 9 2.3 自適應控制 10 第三章 串聯彈性致動器與力量控制 12 3.1 SEA模組設計 12 3.2 SEA動力學模型 13 3.3 SEA之力量控制 19 3.4 滑動控制 23 3.5 穩定性理論 25 第四章 SEA應用於復健機器人 32 4.1 Switching Dual-SEA 32 4.1.1. 平移式Switching Dual-SEA 34 4.1.2. 旋轉式Switching Dual-SEA 37 4.2 復健機器人系統架構 38 4.2.1. 第一模組之動作分析 39 4.2.2. 第二模組之動作分析 40 4.3 切換式SEA模組之相關實務應用 45 第五章 實驗結果與討論 46 5.1 機器人關節動作控制器與中央處理單元 47 5.2 使用者介面開發 51 5.3 實驗結果分析 53 第六章 結論與展望 57 6.1 結論 57 6.2 未來研究方向 57 參考文獻 59

[1] W.H.O. “World Report on Ageing and Health” http://apps.who.int/iris/bitstream/handle/10665/186463/9789240694811_eng.pdf;jsessionid=FB446E18FC18330B1BF469E71A30431A?sequence=1 [Sep. 30, 2015]
[2] C. Liebenson, "Why Some Patients Don't Get Better With Traditional Chiropractic Care, and How Rehabilitation Can Help," Dynamic Chiropractic, vol. 21, No. 23, pp. 1 - 7, 2003.
[3] Y. L. Park, B. Chen, D. Young, L. Stirling, R.J. Wood, E. Goldfield, and R. Nagpal, ”Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4485 – 4495, 2011.
[4] Y.L. Park, B. Chen, C. Majidi, R.J. Wood, R. Nagpal, and E. Goldfield, “Active Modular Elastomer Sleeve for Soft Wearable Assistance Robots,” International Conference on Intelligent Robots and Systems, pp. 1595 – 1602, 2012.
[5] Wilkening and O. Ivlev, “Adaptive Model-Based Assistive Control for Pneumatic Direct Driven Soft Rehabilitation Robots,” IEEE International Conference on Rehabilitation Robotics, pp. 1 – 6, 2013.
[6] D. Sasaki, T. Noritsugu, and M. Takaiwa, ”Development of Pneumatic Lower Limb Power Assist Wear without Exoskeleton,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1239 – 1244, 2012.
[7] Y. Sun, Y.S. Song, and J. Paik, ”Characterization of Silicone Rubber Based Soft Pneumatic Actuators,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4446 – 4453, 2013.
[8] J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, and H. van der Kooij, “A Series Elastic and Bowden Cable Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots,” The International Journal of Robotics Research, pp. 261 – 282, 2006.
[9] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van Der Kooij, “Compliant Actuation of Rehabilitation Robots,” IEEE Robotics and Automation Magazine, pp. 60 – 69, 2008.
[10] S. Oh and K. Kong, “High-Precision Robust Force Control of a Series Elastic Actuator,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 71 – 80, 2017.
[11] Su Hui Kwak ; Sehoon Oh, “Comparison of resonance ratio control and inner force control for series elastic actuator,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics, pp. 7583 – 7588, 2017.
[12] Y. Park, N. Paine, S. Oh, “Development of Force Observer in Series Elastic Actuator for Dynamic Control,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2398 – 2407, 2018.
[13] F. Petit, A. Dietrich, and A. Albu-Schäffer, “Generalizing Torque Control Concepts: Using Well-Established Torque Control Methods on Variable Stiffness Robots,” IEEE Robotics & Automation Magazine, vol. 22, no. 4, pp. 37 – 51, 2015.
[14] H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, “Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1089 – 1100, 2015.
[15] X. Li, Y. Pan, G. Chen, and H. Yu, “Adaptive Human–Robot Interaction Control for Robots Driven by Series Elastic Actuators,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 169 – 182, 2017.
[16] Y. Pan, H. Wang, X. Li, and H. Yu, “Adaptive Command-Filtered Backstepping Control of Robot Arms With Compliant Actuators,” IEEE Transactions on Control Systems Technology, vol. 26, no. 3, pp. 1149 – 1156, 2018.
[17] Y. Zhao, N. Paine , S.J. Jorgensen, and L. Sentis, “Impedance Control and Performance Measure of Series Elastic Actuators,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2817 – 2827, 2018.
[18] A. Calanca, R. Muradore, and P. Fiorini, “A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613 – 624, 2016.
[19] A. Calanca, L. Capisani, P. Fiorini, and A. Ferraraand, “Improving Continuous Approximation of Sliding Mode Control,” IEEE/ASME Transactions on Mechatronics, pp. 1 – 6, 2013.
[20] A. Calanca and P. Fiorini, “Human-adaptive control of series elastic actuators,” Robotica, vol. 2, no. 8, pp. 1301–1316, 2014.
[21] A. Calanca and P. Fiorini, “A Rationale for Acceleration Feedback in Force Control of Series Elastic Actuators,” IEEE Transactions on Robotics, vol. 34, no. 1, pp. 48 – 61, 2018.
[22] A. Calanca and P. Fiorini, “Understanding Environment-Adaptive Force Control of Series Elastic Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 413 – 423, 2018.
[23] Matthew M. Williamson, “Series Elastic Actuators,” Master Thesis, Massachusetts Institute of Technology Artificial Intelligence Laboratory, 1995.
[24] D.P. Losey, A. Erwin, C.G. McDonald, F. Sergi, and M.K.O’Malley, “A Time-Domain Approach to Control of Series Elastic Actuators: Adaptive Torque and Passivity-Based Impedance Control,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 2085 – 2096, 2016.
[25] N. Vitiello, M. Cempini, and S. Crea, “Functional Design of a Powered Elbow Orthosis Toward its Clinical Employment,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 1880 – 1891, 2016.
[26] Q. Zhang, X. Wang, M. Tian, X. Shen, and Q. Wu, “Modeling of Novel Compound Tendon-Sheath Artificial Muscle Inspired by Hill Muscle Mode,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp 6372 – 6381, 2018.
[27] H. Yu, S. Huang, G. Chen, Y. Pan, and Z. Guo, “Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1089 – 1100, 2015.
[28] D. Accoto, F. Sergi, and N.L. Tagliamonte, “Robomorphism: A Nonanthropomorphic Wearable Robot,” IEEE Robotics & Automation Magazine, vol. 21, no. 4, pp 45 – 55, 2014.
[29] G. A. Pratt and M. Williamson, “Series elastic actuators,” in Proc. Int. Conf. Intell. Robots Syst., vol. 1, pp. 399–406, 1995.
[30] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.
[31] Shayang Ye Dc Micro Moto DC Motor Specifications, [Online]. Available: http://www.shayangye.com/product-inner.aspx?f=s&i=130
[32] 李冠德,「設計輔助控制系統應用於上肢復健機器人」,臺灣大學電機工程學系研究所碩士論文,民國101年
[33] 陳家瑩,「居家式上肢復健系統之研發」,成功大學工程科學系碩士論文,民國103年.
[34] 張茹茵,「設計發展機器手臂輔助神經復健系統於中風後上肢復健評估與治療」,成功大學醫學工程研究所博士論文,民國98年.
[35] 吳思穎,「上肢復健機器臨床試驗與改良」,成功大學機械工程學系博士班論文,民國102年.
[36] 陳俊廷,「McKibben人工肌肉上肢外骨架機器人之設計」,臺灣師範大學機電科技學系碩士論文,民國101年.
[37] 蔡宗親,「具順應性控制之雙腱纜線驅動關節模組開發」,國立臺灣科技大學電機工程學系研究所碩士論文,民國101年
[38] Y. Aniroh,「Adaptive Gain Sliding Control Based Trajectory Tracking For Wheeled Wall Climbing Robots」,國立臺灣科技大學電機工程學系研究所碩士論文,民國103年
[39] 許妙如,「承重跑步機訓練之下肢外骨骼復健機器人滑動模式控制」,國立臺灣科技大學電機工程學系研究所碩士論文,民國104年
[40] A.P. Yudh,「無感測器順應式控制之下肢外骨骼機器人體重支撐跑步機復健訓練」,國立臺灣科技大學電機工程學系研究所碩士論文,民國105年

無法下載圖示 全文公開日期 2023/08/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE