簡易檢索 / 詳目顯示

研究生: 陳婷萱
Ting-Xuan Chen
論文名稱: 結合離合慣質阻尼之斜面式滾動隔震支承之數值分析
Numerical Analysis of Slope Rolling-Type Seismic Isolators Combined with Clutch Inerter Damper
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 汪向榮
Shiang-Jung Wang
陳沛清
Pei-Ching Chen
黃謝恭
Shieh-Kung Huang
張家銘
Chia-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 167
中文關鍵詞: 斜面滾動支承離合慣質阻尼被動隔震支承
外文關鍵詞: slope rolling-type seismic isolatiors, passive control, clutch inertial damping
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

斜面滾動隔震支承(SRI),為避免大地震下SRI最大位移超出設計位移而發生碰撞,通常會增加摩擦阻尼而降低SRI位移反應,如此一來會導致中小地震下加速度反應有過度放大的情形發生,造成隔震效果不佳。前人研究嘗試以慣質機構結合斜面滾動隔震支承(iSRI),在SRI產生相對運動時,慣質能產生與相對加速度有關之慣質力,藉此降低SRI位移及速度反應,但增加過多的慣質會導致傳遞至上版及受保護設備之加速度反應增加,而為了改善此問題,本研究採用離合慣質阻尼結合斜面滾動隔震支承(ciSRI)。而本研究主要利用數值模擬方式,探討ciSRI在不同地震特性下的反應以及樓板加速度反應,並且於實務上應用及數值模擬分析結果給予建議值。
於正弦波分析結果可知,在相同外力擾動下, ciSRI力學行為介於SRI、iSRI之間;而在飛輪阻尼無因次係數設置上,觀察到其參數與慣質及週期較有相關性,故透過飛輪阻尼、慣質、週期參數提出一建議公式,以供使用者設計足夠的慣質阻尼參數。本研究探討SRI、iSRI、ciSRI放置於地表、不同高度建築之不同樓層樓板等狀況,整體來說,在相同位移限制下,ciSRI相較於SRI能有效降低PO;在大範圍慣質比及阻尼因子之分析結果方面,分別於地表及不同高度建築不同樓層之狀況,提出慣質比及阻尼因子之建議值;此外,本研究亦探討在阻尼因子固定為0.02此一較為實務的狀況,發現低層及中層建築不建議使用ciSRI,若放置於高層建築中,則不論是放置於低中高樓層,ciSRI表現均較有優勢,故高層建築建議使用ciSRI。


Sloping rolling-type seismic isolators (SRI) is typically equipped with increased friction damping to reduce the displacement response and prevent excessive displacement during major earthquakes, thus avoiding collisions. However, this approach can lead to excessive amplification of acceleration response during moderate to small earthquakes, resulting in poor isolation effectiveness. Previous studies have attempted to incorporate an inertial mechanism with the Sloping rolling-type seismic isolators (iSRI). The inertial mechanism generates inertial forces related to relative acceleration during relative motion between SRI components, thereby reducing displacement and velocity response. However, excessive inertia can lead to increased acceleration response transmitted to the upper structure and protected equipment. To address this issue, this study adopts a clutch-inertia damper combined with the Sloping rolling-type seismic isolators (ciSRI). This study primarily utilizes numerical simulations to investigate the response and floor acceleration response of ciSRI under different seismic characteristics. Practical applications and numerical simulation analysis results are used to provide recommended values.
Numerical analysis of sloping rolling-type seismic isolators combined with clutch inertial damping reveals that, in sinusoidal analysis results, the mechanical behavior of ciSRI lies between SRI and iSRI under the same external force perturbation. It is observed that the parameters of flywheel damping are more correlated with inertia and period, and a formula is proposed to address this issue. In seismic analysis results, considering the ground motion duration, different floor accelerations of buildings at various heights, and inputting SRI, iSRI, and ciSRI, ciSRI demonstrates effective reduction in PO (Pounding Occurs, PO) compared to SRI under the same displacement limitation. Based on the analysis of a wide range of inertia ratios and damping factors, two sets of recommended values can be proposed for different floor levels of buildings at different heights and on the ground. Practical application suggests that for a damping factor of 0.02, ciSRI is not recommended for placement in low-rise and mid-rise buildings, while it exhibits advantages in high-rise buildings regardless of floor levels. Therefore, ciSRI is recommended for high-rise buildings.

摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景及文獻回顧 1 1.2 研究內容及架構 6 第二章 離合慣質阻尼結合斜面式滾動隔震支承(ciSRI) 8 2.1 SRI基本構造 8 2.1.1 SRI運動方程式推導 9 2.1.2 SRI模擬方法 15 2.2 離合慣質阻尼系統介紹 16 2.2.1 離合慣質阻尼系統方程式推導 18 2.2.2 離合慣質阻尼結合斜面式滾動隔震支承之建立 19 2.3 本研究模擬之SRI模型構造與設定參數 21 第三章 地震資料介紹 22 3.1 地震資料 22 3.2 地震資料分類 23 3.3 近斷層地震波、遠域地震波資料 24 第四章 低中高層建築框架介紹 29 第五章 數值模擬 35 5.1 ciSRI 自由震盪分析 35 5.2 ciSRI 正弦波分析 36 5.2.1 ciSRI在相同週期不同振幅下正弦波分析 37 5.2.2 ciSRI在相同振幅不同週期下正弦波分析 40 5.2.3 ciSRI 飛輪阻尼需求量探討 43 5.3 ciSRI 地震分析 47 5.3.1 性能指標 47 5.3.2 比較無慣質及定慣質以及離合慣質的地震結果 49 5.3.2.1 大範圍參數分析探討 49 5.3.2.1.1 地表地震歷時輸入之結果 49 5.3.2.1.2 結構中樓板之地震歷時輸入之結果 52 5.3.2.1.2.1 低層建築樓板 52 5.3.2.1.2.2 中層建築樓板 56 5.3.2.1.2.3 高層建築樓板 63 5.3.2.2 實際阻尼因子參數分析探討 70 5.3.2.2.1 地表地震歷時輸入結果 70 5.3.2.2.2 結構中樓板之地震歷時輸入之結果 71 5.3.2.2.2.1 低層建築樓板 72 5.3.2.2.2.2 中層建築樓板 75 5.3.2.2.2.3 高層建築樓板 78 5.3.3 根據定慣質及離合慣質之地震分析結果選出各參數建議值 85 5.3.3.1 以實務上阻尼因子為定值所給予之建議值 85 5.3.3.2 根據數值模擬所給予之建議值 86 5.3.3.2.1 地表案例之建議值 86 5.3.3.2.2 結構樓板案例之建議值 90 5.3.3.2.2.1 低層建築之建議值 90 5.3.3.2.2.2 中層建築之建議值 93 5.3.3.2.2.3 高層建築之建議值 103 5.3.3.3 各建議值下ciSRI、iSRI與SRI之比較結果 115 5.3.4 以近斷層地震波、遠域地震波分析推薦之兩類建議值參數 119 5.3.4.1 ciSRI於三種建議值下近斷層地震波及遠域地震波結果 119 5.3.4.2 iSRI於三種建議值下近斷層地震波及遠域地震波結果 126 第六章 結論及未來研究方向 132 6.1 結論 132 6.1.1 ciSRI自由震盪分析 132 6.1.2 ciSRI正弦波分析 132 6.1.3 ciSRI地震分析 133 6.1.4 未來研究方向 135 參考文獻 136 附錄A 141

[1] 內政部營建署, "建築物耐震設計規範及解說," 民國一百一十一年十月.
[2] M. H. a. M. H. E. Naggar, "On the performance of SCF in seismic isolation of the interior equipment of buildings," Earthquake Engineering & Structural Dynamics, vol. 36, no. 11, pp. 1581-1604, 2007/09/01 2007.
[3] M. C. C. T. M. Al-Hussaini, and V. A. Zayas, "Seismic isolation of multi-story frame structures using spherical sliding isolation systems," National Center for Earthquake Engineering Research, 1994.
[4] R. I. Skinner, "An introduction to seismic isolation/R.," Ivan skinner, William h. Robinson, and graeme h. mcverry., 1993.
[5] C. C. C. T. W. Lin, C. C. J. E. e. Hone,and s. dynamics, "Experimental study of base isolation by free rolling rods," vol. 24, no. 12, pp. 1645-1650, 1995.
[6] X. L. Q. Zhou, Q. Wang, D. Feng, Q. J. E. e. Yao, and s. dynamics, "Dynamic analysis on structures base‐isolated by a ball system with restoring property," vol. 27, no. 8, pp. 773-791, 1998.
[7] S. J. Wang, J. S. Hwang, K. C. Chang, C. Y. Shiau, and W. C. Lin, "Sloped rolling-type isolation devices for seismic protection of equipment and facilities," in 13th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2013, September 11, 2013 - September 13, 2013, Sapporo, Japan, 2013: Hokkaido University collection of Scholarly Academic Papers, HUSCAP, in Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2013.
[8] M. H. Tsai, S. Y. Wu, K. C. Chang, and G. C. Lee, "Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings," (in English), Engineering Structures, vol. 29, no. 5, pp. 694-702, May 2007, doi: 10.1016/j.engstruct.2006.05.025.
[9] 許志隆, "斜面式滾動隔震支承之地震力位移反應探討," 碩士, 營建工程系, 國立臺灣科技大學, 2015. [Online]. Available: https://hdl.handle.net/11296/2t9zt9
[10] S. J. Wang, C. H. Yu, C. Y. Cho, and J. S. Hwang, "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling‐type seismic isolators," Structural Control and Health Monitoring, vol. 26, no. 5, 2019, doi: 10.1002/stc.2342.
[11] S. J. Wang, C. H. Yu, W. C. Lin, J. S. Hwang, and K. C. Chang, "A generalized analytical model for sloped rolling-type seismic isolators," (in English), Engineering Structures, vol. 138, pp. 434-446, May 1 2017, doi: 10.1016/j.engstruct.2016.12.027.
[12] 王耀萱, "斜面式滾動隔震支承之位移反應分析探討," 碩士, 營建工程系, 國立臺灣科技大學, 2014. [Online]. Available: https://hdl.handle.net/11296/8uak44
[13] 洪家翔, "斜面式滾動隔震支承之分析模型建立與驗證," 碩士, 營建工程系, 國立臺灣科技大學, 2013. [Online]. Available: https://hdl.handle.net/11296/7zpj23
[14] 卓忠陽, "斜面式滾動隔震支承之多軸向遲滯行為試驗與地震力位移反應探討," 碩士, 營建工程系, 國立臺灣科技大學, 2017. [Online]. Available: https://hdl.handle.net/11296/9g6xkz
[15] 黃治華, "強震預警技術應用於半主動斜面式滾動支承之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2019. [Online]. Available: https://hdl.handle.net/11296/xrm3wf
[16] 戴珮珊, "利用震波最大速度推估值決定半主動斜面式滾動隔震支承阻尼力之研究," 碩士, 營建工程系, 國立臺灣科技大學, 2020. [Online]. Available: https://hdl.handle.net/11296/j7t8n5
[17] P.-C. Chen and S.-J. Wang, "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets," Structural Control and Health Monitoring, vol. 24, no. 1, 2017, doi: 10.1002/stc.1853.
[18] M. C. Smith, "Synthesis of mechanical networks: the inerter," vol. 47, no. 10, pp. 1648-1662, 2002.
[19] 林子婷, "雙向具慣質電磁式調諧質量阻尼器之最佳設計與振動台試驗," 碩士, 土木工程學系所, 國立中興大學, 2018.
[20] 李政庭, "結合慣質之斜面滾動式隔震支承研發," 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/fkxsc7
[21] 賴以安, "由斜面滾動隔震支承平面耦合探討至結合慣質設計之分析試驗研究," 碩士, 營建工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/tr94jr
[22] N. Makris and G. Kampas, "Seismic protection of structures with supplemental rotational inertia," Journal of Engineering Mechanics, vol. 142, no. 11, 2016, doi: 10.1061/(ASCE)EM.1943-7889.0001152.
[23] M. Wang and F. Sun, "Displacement reduction effect and simplified evaluation method for SDOF systems using a clutching inerter damper," Earthquake Engineering & Structural Dynamics, vol. 47, no. 7, pp. 1651-1672, 2018, doi: 10.1002/eqe.3034.
[24] L. Li, Q. Liang, and H. Qin, "Equivalent Linearization Methods for a Control System with Clutching Inerter Damper," Applied Sciences, vol. 9, no. 4, 2019, doi: 10.3390/app9040688.
[25] C. Málaga-Chuquitaype, C. Menendez-Vicente, and R. Thiers-Moggia, "Experimental and numerical assessment of the seismic response of steel structures with clutched inerters," Soil Dynamics and Earthquake Engineering, vol. 121, pp. 200-211, 2019, doi: 10.1016/j.soildyn.2019.03.016.
[26] Q. Liang and L. Li, "Optimal design for a novel inerter-based clutching tuned mass damper system," Journal of Vibration and Control, vol. 26, no. 21-22, pp. 2050-2059, 2020, doi: 10.1177/1077546320910532.
[27] Q. Liang and L. Li, "Theoretical and experimental analyses of structures with supplemental clutching inertia devices," Earthquake Engineering & Structural Dynamics, vol. 52, no. 3, pp. 609-623, 2022, doi: 10.1002/eqe.3776.
[28] Y.-l. Zheng and L.-y. Li, "Experimental study and numerical simulation of inerter-based systems," Journal of Vibration and Control, vol. 29, no. 5-6, pp. 985-997, 2022, doi: 10.1177/10775463211057354.
[29] L. Li and Q. Liang, "Seismic Assessment and Optimal Design for Structures with Clutching Inerter Dampers," Journal of Engineering Mechanics, vol. 146, no. 4, 2020, doi: 10.1061/(asce)em.1943-7889.0001732.
[30] J. Wang, C. Zhang, and Z. Liu, "Clutching inerters enhanced tuned mass dampers for structural response mitigation under impulsive and seismic excitations," Structural Control and Health Monitoring, vol. 29, no. 2, 2021, doi: 10.1002/stc.2881.
[31] R. S. Jangid, "Performance and optimal design of base‐isolated structures with clutching inerter damper," Structural Control and Health Monitoring, vol. 29, no. 9, 2022, doi: 10.1002/stc.3000.
[32] S. K. S. a. J. W. Baker, "An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions," Bulletin of the Seismological Society of America, vol. 104, no. 5, pp. 2456-2466, 2014.
[33] M. Fahimi Farzam and H. Hojat Jalali, "Tandem tuned mass damper inerter for passive control of buildings under seismic loads," Structural Control and Health Monitoring, vol. 29, no. 9, 2022, doi: 10.1002/stc.2987.
[34] 王聖閔, "具多重控制性能斜面滾動隔震支承之設計、分析與試驗研究," 碩士, 營建工程系, 國立臺灣科技大學, 2021. [Online]. Available: https://hdl.handle.net/11296/6vbtsc

無法下載圖示 全文公開日期 2028/08/24 (校內網路)
全文公開日期 2028/08/24 (校外網路)
全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE