簡易檢索 / 詳目顯示

研究生: 陳昱伯
YU-BO CHEN
論文名稱: 離合慣質阻尼結合曲面摩擦隔震支承之數值分析與多目標最佳化分析
Numerical Analysis and Multi-Objective Optimization Analysis of Clutch Inerter Damper Combined With Friction Pendulum Bearing
指導教授: 許丁友
Ting-Yu Hsu
口試委員: 汪向榮
Shiang-Jung Wang
黃謝恭
Shieh-Kung Huang
陳沛清
Pei-Ching Chen
張家銘
Chia-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 303
中文關鍵詞: 曲面摩擦隔震支承被動控制系統慣質離合慣質多目標最佳化互制運動調諧質量阻尼器
外文關鍵詞: Friction pendulum bearing, passive control system, inertia, clutching inerter, multi-objective optimization, interaction motion, tuned mass damper
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曲面摩擦隔震支承(Friction pendulum bearing,FPB)能控制結構週期,且不會因為自重的改變或上部結構物損壞而改變整體週期 ,且其回復力與自重成正比能避免偏心問題,又保有穩定的自復位能力。但面對長週期的速度脈衝地震,在短時間內地表產稱大位移,此種地震易使FPB的位移過大,導致隔震層失效。面對此類狀況,本研究在隔震層中加裝各類減震器,包含線性黏滯阻尼器(Viscous Damper,VD)、慣質阻尼器(Inertial Mass Damper,IMD)、離合慣質阻尼器(Clutch Inerter Damper,CID) (統稱隔震組),另一組機構為在主結構或隔震層加裝離合慣質調諧質量阻尼器(Turned Mass Damper-Clutching Inerter,TMDCI)、定慣質調諧質量阻尼器(Turned Mass Damper- Inerter,TMDI)、調諧質量阻尼器(Turned Mass Damper ,TMD )(統稱TMD隔震組)。
    本研究探討各機構的歷時反應與消能方式,並使用具約束的多目標最佳化尋找最佳參數組合。其中,針對具CID機構中的離合反應與分離時慣質的運動做更深入的分析,以Newmark數值積分模擬慣質與結構的互制運動,發現過去不考慮慣質與結構互制效應的數值模型中,忽略的較多消能量與運動細節,導致模擬結果失真,且假設與理論矛盾。
    本研究透過最佳化分析發現,在隔震組的比較中,曲面摩擦隔震支承與離合慣質阻尼器(FPB-CID)並聯至地表的機構與面摩擦隔震支承與線性黏滯阻尼器(FPB-VD)並聯至地表的機構效果較為接近,FPB-VD由於只有唯一解,相比FPB-CID有較多設計參數的選擇,且在消能效率方面勝過FPB-VD,故FPB-CID是最佳選擇。在TMD隔震組的比較中,於具曲面摩擦隔震支承結構中串聯一離合慣質調諧質量阻尼器至地表(Friction pendulum bearing with Turned Mass Damper-Clutching Inerter,TMDCI-FPB-R)是最佳選擇,因其在抑制最大上傳地震力與提升消能效率的表現較佳。


    Friction pendulum bearing (FPB) are able to control the period of structures and maintain a constant overall period regardless of changes in self-weight or damage to the upper structure. They exhibit restoring force proportional to their self-weight, which helps mitigate eccentricity issues and ensures stable recentering capability. However, when subjected to long-period velocity pulse earthquake, which induce significant ground displacements in a short duration, FPB may experience excessive displacement leading to the failure of isolation. To address this issue, this study investigates the incorporation of various damping devices in the isolation layer, including viscous damper (VD), inertial mass damper (IMD), and clutch inerter dampers (CID) collectively referred to as the isolation group. Another set of mechanisms involves the installation of turned mass dampers (TMD) in the main structure or isolation layer, including turned mass damper-clutching inerter (TMDCI), turned mass damper-inerter (TMDI), and turned mass damper (TMD), collectively referred to as the TMD isolation group.

    This research explores the temporal response and energy dissipation characteristics of each mechanism, employing constrained multi-objective optimization to identify the optimal parameter combinations. Specifically, a more in-depth analysis is conducted on the clutching response and inertial motion during separation in the CID mechanism. Newmark numerical integration is utilized to simulate the interaction between inertia and structure, revealing that neglecting the interaction effects between inertia and structure in previous numerical models resulted in significant energy dissipation omission and distorted simulation results, which contradicted assumptions and theories.

    Through the optimization analysis, this study finds that among the isolation groups, the performance of combining FPB and CID mechanisms (FPB-CID) in parallel with the ground is comparable to that of combining FPB and VD mechanisms (FPB-VD) in parallel with the ground. Due to its unique solution, FPB-VD provides more choices for design parameters compared to FPB-CID, but FPB-CID outperforms FPB-VD in terms of energy dissipation efficiency, making it the optimal choice. In the comparison of the TMD isolation group, the configuration that serially connects a clutching inerter turned mass damper to the ground in structures with FPB (Friction pendulum bearing with Turned Mass Damper-Clutching Inerter, TMDCI-FPB-R) exhibits superior performance in suppressing the maximum transmitted seismic force and enhancing energy dissipation efficiency.

    摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 XIII 表目錄 XXI 1 第一章 緒論 1 1.1 研究背景及文獻回顧 1 1.2 研究內容及架構 4 2 第二章 數值分析公式推導 7 2.1 定慣質與離合慣質阻尼與各類阻尼介紹 7 2.2 CID機構介紹 8 2.2.1 CID數值分析 9 2.2.2 舊模型數值分析方法與假設 12 2.2.3 新模型數值分析方法與假設 13 2.2.4 趨近100%接合比例的CID與IMD的差別 15 2.2.5 新舊模型比較、整理及範例 16 2.3 具CID機構的數值運算方法 20 2.4 FPB機構及方程式 22 2.4.1 FPB數值分析方法 25 2.5 具FPB與CID且兩者不並聯的數值運算方法 27 2.6 具FPB與CID且兩者並聯的數值運算方法 29 3 第三章 數值分析與機構介紹 32 3.1 機構參數表 32 3.2 隔震組 34 3.2.1 FPB 34 3.2.2 FPB-IMD 37 3.2.3 FPB-VD 39 3.2.4 FPB-CID 40 3.3 TMD隔震組 47 3.3.1 TMD-FPB 48 3.3.2 TMDCI-FPB-R 49 3.3.3 TMDCI-FPB-I 52 3.3.4 TMDI-FPB-R 54 3.3.5 TMDI-FPB-I 55 4 第四章 地震資料介紹 57 4.1 參數最佳化之地震資料 57 4.2 動力歷時分析之地震資料 58 5 第五章 多目標最佳化分析 60 5.1 多目標約束粒子群最佳化 60 5.1.1 粒子與粒子的相互支配(Dominance) 62 5.1.2 最佳化帕雷托集(Pareto Front) 63 5.1.3 個體最佳與群體最佳的選擇 64 5.2 最佳化參數與目標函數設定之概念 65 5.3 機構目標函數設定 66 5.3.1 FPB參數設定 67 5.3.2 FPB-IMD參數設定 67 5.3.3 FPB-VD參數設定 68 5.3.4 FPB-CID參數設定 68 5.3.5 TMD-FPB參數設定 69 5.3.6 TMDCI-FPB-R參數設定 70 TMDCI-FPB-I參數設定 71 5.3.7 TMDI-FPB-R參數設定 71 5.3.8 TMDI-FPB-I參數設定 72 5.4 CMOEPSO分析運算流程總結 72 5.5 CMOEPSO分析的迭代收斂曲線 75 6 第六章 最佳化結果與動力歷時分析 77 6.1 CMOEPSO分析結果 77 6.1.1 FPB 78 6.1.2 FPB-IMD 80 6.1.3 FPB-VD 82 6.1.4 FPB-CID 83 6.1.5 隔震組結果討論 86 6.1.6 TMD-FPB 87 6.1.7 TMDCI-FPB-R 89 6.1.8 TMDCI-FPB-I 94 6.1.9 TMDI-FPB-R 97 6.1.10 TMDI-FPB-I 99 6.1.11 TMD隔震組結果討論 101 6.1.12 TMD隔震組 參數探討 102 6.2 動力歷時分析 104 6.2.1 隔震組動力歷時分析 105 6.2.2 TMD隔震組動力歷時分析 115 7 第七章 固定FPB參數對CMOEPSO分析加以驗證 128 7.1 隔震組固定FPB參數的CMOEPSO分析 132 7.1.1 隔震組固定FPB參數的FPB-CID 133 7.1.2 隔震組固定FPB參數的FPB-IMD 134 7.1.3 隔震組固定FPB參數的FPB-VD 135 7.2 TMD隔震組固定FPB參數的CMOEPSO分析 136 7.2.1 TMD隔震組固定FPB參數的TMD-FPB 138 7.2.2 TMD隔震組固定FPB參數的TMDCI-FPB-R 139 7.2.3 TMD隔震組固定FPB參數的TMDCI-FPB-I 140 7.2.4 TMD隔震組固定FPB參數的TMDI-FPB-R 142 7.2.5 TMD隔震組固定FPB參數的TMDI-FPB-I 143 7.3 隔震組固定FPB參數的動力歷時分析 145 7.4 TMD隔震組固定FPB參數的動力歷時分析 145 8 第八章 結論與未來研究方向 146 8.1 結論 146 8.1.1 考慮飛輪自由度之CID數值模擬 147 8.1.2 隔震組正弦波分析 147 8.1.3 隔震組CMOEPSO分析結果 148 8.1.4 TMD隔震組CMOEPSO分析結果 149 8.1.5 隔震組動力歷時分析結果 150 8.1.6 TMD隔震組動力歷時分析結果 151 8.1.7 固定FPB參數之CMOEPSO分析結果 152 8.2 未來研究方向 152 參考文獻 154

    [1] "<建築物耐震設計規範及解說>."
    [2] J. S. Hwang, C. F. Hung, Y. N. Huang, and S. J. Wang, "Design Force Transmitted by Isolation System Composed of Lead-Rubber Bearings and Viscous Dampers," International Journal of Structural Stability and Dynamics, vol. 10, no. 02, pp. 287-298, 2012, doi: 10.1142/s0219455410003440.
    [3] S.-J. Wang, Y.-L. Sung, C.-Y. Yang, W.-C. Lin, and C.-H. Yu, "Control Performances of Friction Pendulum and Sloped Rolling-Type Bearings Designed with Single Parameters," Applied Sciences, vol. 10, no. 20, 2020, doi: 10.3390/app10207200.
    [4] S. J. Wang, C. H. Yu, C. Y. Cho, and J. S. Hwang, "Effects of design and seismic parameters on horizontal displacement responses of sloped rolling‐type seismic isolators," Structural Control and Health Monitoring, vol. 26, no. 5, 2019, doi: 10.1002/stc.2342.
    [5] S.-J. Wang, C.-H. Yu, W.-C. Lin, J.-S. Hwang, and K.-C. Chang, "A generalized analytical model for sloped rolling-type seismic isolators," Engineering Structures, vol. 138, pp. 434-446, 2017, doi: 10.1016/j.engstruct.2016.12.027.
    [6] I. M. D. Christian A. Barrera-Vargas , José M. Soria "Enhancing Friction Pendulum Isolation Systems Using Passive and Semi-Active Dampers," 2020.
    [7] G. Lomiento, N. Bonessio, and G. Benzoni, "Friction Model for Sliding Bearings under Seismic Excitation," Journal of Earthquake Engineering, vol. 17, no. 8, pp. 1162-1191, 2013, doi: 10.1080/13632469.2013.814611.
    [8] W. L. He, "Novel Semiactive Friction Controller for Linear Structures against Earthquakes," 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:7(941).
    [9] B.-G. Jeon, S.-J. Chang, K.-R. Park, N.-S. Kim, and D.-Y. Jung, "Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System," Journal of the Earthquake Engineering Society of Korea, vol. 15, no. 2, pp. 23-33, 2011, doi: 10.5000/eesk.2011.15.2.023.
    [10] A. W.-H. L. YEN-PO WANG, "SEISMIC RESPONSE ANALYSIS OF BRIDGES ISOLATED WITH FRICTION PENDULUM BEARINGS," 1998.
    [11] S. J. Wang, W. C. Lin, Y. S. Chiang, and J. S. Hwang, "Mechanical behavior of lead rubber bearings under and after nonproportional plane loading," Earthquake Engineering & Structural Dynamics, vol. 48, no. 13, pp. 1508-1531, 2019, doi: 10.1002/eqe.3211.
    [12] S.-J. Wang, W.-C. Lin, Y.-S. Chiang, and J.-S. Hwang, "Coupled Bilateral Hysteretic Behavior of High-damping Rubber Bearings under Non-proportional Plane Loading," Journal of Earthquake Engineering, vol. 26, no. 9, pp. 4421-4448, 2020, doi: 10.1080/13632469.2020.1830889.
    [13] K.-C. Tsai, C.-H. Hsu, C.-H. Li, and P.-Y. Chin, "Experimental and analytical investigations of steel panel dampers for seismic applications in steel moment frames," Earthquake Engineering & Structural Dynamics, vol. 47, no. 6, pp. 1416-1439, 2018, doi: 10.1002/eqe.3023.
    [14] C. Mahrenholtz et al., "Retrofit of reinforced concrete frames with buckling-restrained braces," Earthquake Engineering & Structural Dynamics, vol. 44, no. 1, pp. 59-78, 2015, doi: 10.1002/eqe.2458.
    [15] M. C. C. A. M. D. SYMANS, "EXPERIMENTAL STUDY OF SEISMIC RESPONSE OF BUILDINGS WITH SUPPLEMENTAL FLUID DAMPERS," 1993.
    [16] S.-J. Wang, Q.-Y. Zhang, and C.-H. Yu, "Prediction of Beyond Design and Residual Performances of Viscoelastic Dampers by a Simplified Fractional Derivative Model," International Journal of Structural Stability and Dynamics, vol. 21, no. 06, 2021, doi: 10.1142/s0219455421500814.
    [17] F. Sadek, B. Mohraz, A. W. Taylor, and R. M. Chung, "A Method of Estimating the Parameters of Tuned Mass Dampers for Seismic Applications," Earthquake Engineering & Structural Dynamics, vol. 26, no. 6, pp. 617-635, 1997, doi: 10.1002/(sici)1096-9845(199706)26:6<617::Aid-eqe664>3.0.Co;2-z.
    [18] S.-J. Wang, K.-C. Chang, J.-S. Hwang, and B.-H. Lee, "Simplified analysis of mid-story seismically isolated buildings," Earthquake Engineering & Structural Dynamics, vol. 40, no. 2, pp. 119-133, 2011, doi: 10.1002/eqe.1004.
    [19] M. C. J. I. T. o. a. c. Smith, "Synthesis of mechanical networks: the inerter," vol. 47, no. 10, pp. 1648-1662, 2002.
    [20] D. De Domenico and G. Ricciardi, "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)," Earthquake Engineering & Structural Dynamics, vol. 47, no. 5, pp. 1169-1192, 2018, doi: 10.1002/eqe.3011.
    [21] F. Michael, D. De Domenico, and G. Ricciardi, "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems," Earthquake Engineering & Structural Dynamics, 2018, doi: 10.1002/eqe.3098.
    [22] D. De Domenico and G. Ricciardi, "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study," Structural Control and Health Monitoring, vol. 25, no. 10, 2018, doi: 10.1002/stc.2234.
    [23] Jingjing Wang and Y. Zheng, "Experimental validation, analytical investigation, and design method of tuned mass damper-clutching inerter for robust control of structures," 2022.
    [24] K. Ikago, K. Saito, and N. Inoue, "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper," Earthquake Engineering & Structural Dynamics, vol. 41, no. 3, pp. 453-474, 2012, doi: 10.1002/eqe.1138.
    [25] X. Liu, J. Z. Jiang, B. Titurus, and A. Harrison, "Model identification methodology for fluid-based inerters," Mechanical Systems and Signal Processing, vol. 106, pp. 479-494, 2018, doi: 10.1016/j.ymssp.2018.01.018.
    [26] C. Málaga-Chuquitaype, C. Menendez-Vicente, and R. Thiers-Moggia, "Experimental and numerical assessment of the seismic response of steel structures with clutched inerters," Soil Dynamics and Earthquake Engineering, vol. 121, pp. 200-211, 2019, doi: 10.1016/j.soildyn.2019.03.016.
    [27] R. S. Jangid, "Performance and optimal design of base‐isolated structures with clutching inerter damper," Structural Control and Health Monitoring, vol. 29, no. 9, 2022, doi: 10.1002/stc.3000.
    [28] Q. Liang and L. Li, "Optimal design for a novel inerter-based clutching tuned mass damper system," Journal of Vibration and Control, vol. 26, no. 21-22, pp. 2050-2059, 2020, doi: 10.1177/1077546320910532.
    [29] L. Li, Q. Liang, and H. Qin, "Equivalent Linearization Methods for a Control System with Clutching Inerter Damper," Applied Sciences, vol. 9, no. 4, 2019, doi: 10.3390/app9040688.
    [30] M. Wang and F. Sun, "Displacement reduction effect and simplified evaluation method for SDOF systems using a clutching inerter damper," Earthquake Engineering & Structural Dynamics, vol. 47, no. 7, pp. 1651-1672, 2018, doi: 10.1002/eqe.3034.
    [31] B. J. Hancock and C. A. Mattson, "The smart normal constraint method for directly generating a smart Pareto set," Structural and Multidisciplinary Optimization, vol. 48, no. 4, pp. 763-775, 2013, doi: 10.1007/s00158-013-0925-6.
    [32] I. Das. and J. E. Dennis, "Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems.," 1998.
    [33] S.-J. Wang et al., "Sloped multi-roller isolation devices for seismic protection of equipment and facilities," Earthquake Engineering & Structural Dynamics, vol. 43, no. 10, pp. 1443-1461, 2014, doi: 10.1002/eqe.2404.
    [34] A. G. Laurentiu Marian "The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting," doi: 10.12989/sss.2017.19.6.665.
    [35] J. Wang, C. Zhang, and Z. Liu, "Clutching inerters enhanced tuned mass dampers for structural response mitigation under impulsive and seismic excitations," Structural Control and Health Monitoring, vol. 29, no. 2, 2021, doi: 10.1002/stc.2881.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE