簡易檢索 / 詳目顯示

研究生: 劉懿鋐
Yi-Hong Liu
論文名稱: 基於雨水特徵分離網路之雨量分類
Rainfall Classification Based on Raindrop Feature Separation Network
指導教授: 張以全
I-Tsyuen Chang
口試委員: 藍振洋
張洪正
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 深度學習自動駕駛雨量密度分類
外文關鍵詞: Deep Learning, Autonomous Driving, Rainfall Density Classification
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現代科技的快速發展中,自動駕駛技術已經成為汽車行業的一個核心領域。然而自動駕駛技術的應用在不同的天氣條件下,特別是在降雨天氣下,仍然面臨著重要的挑戰。天氣條件的不確定性和多變性使得自動駕駛系統難以適應,進而影響其安全性和效能。
因此近年來,許多研究致力於解決自動駕駛系統在不同天氣條件下的問題。其中,雨量大小成為一個值得關注的研究方向。在雨天行駛時,降雨的強弱會直接影響自動駕駛系統的感知和決策,因此準確地分類雨量大小對於提高自動駕駛系統的性能至關重要。
本研究旨在通過深入研究和分析,開發一種有效的雨量大小分類方法,以幫助自動駕駛系統提升在降雨天氣下的表現。我們將採用 CNN 作為分類器,結合帶有雨量標籤之雨滴數據集和雨水特徵分離網路之特徵提取方法,以實現對雨量大小的準確分類。期望可以提升自動駕駛系統在實際應用中的安全性和效能,同時為汽車行業的未來發展做出寶貴貢獻。


In the rapid development of modern technology, autonomous driving technology has
become a core area in the automotive industry. However, the application of autonomous
driving technology still faces significant challenges under different weather conditions,
especially in rainy weather. The uncertainty and variability of weather conditions make
it difficult for autonomous driving systems to adapt, thereby affecting their safety and
performance.
Therefore, in recent years, many studies have focused on addressing the issues of
autonomous driving systems under different weather conditions. Among them, the classification of rainfall intensity has become a noteworthy research direction. When driving in
rainy weather, the intensity of rainfall directly affects the perception and decision-making
of autonomous driving systems. Therefore, accurate classification of rainfall intensity is
crucial for improving the performance of autonomous driving systems.
This study aims to develop an effective method for classifying rainfall intensity through
in-depth research and analysis, to help autonomous driving systems enhance their performance in rainy weather conditions. We will use CNN as the classifier, combined with
a feature extraction method that separates rainwater features, using datasets labeled with
rainfall amounts. It is expected that this approach can improve the safety and performance
of autonomous driving systems in real-world applications, while making valuable contributions to the future development of the automotive industry.

論文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 自動駕駛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 深度學習 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 卷積神經網路 CNN . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 循環神經網路 RNN . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 長短期記憶網路 LSTM . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.4 生成對抗式網路 GAN . . . . . . . . . . . . . . . . . . . . . . . 5 第二章 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 除雨方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 分類器方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第三章 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 雨水特徵分離網路 (Raindrop Feature Separation Network, RFSN) . . . . 14 3.2 模型縮減 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 模型剪枝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 知識蒸餾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 輕量化模型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.4 模型量化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 分類器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.3 Res2Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.4 MobileNet V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 資料集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.1 DID-MDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.2 資料集處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 模型訓練 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第四章 實驗結果與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 雨水特徵網路訓練結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 分類器訓練結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 無使用 RFSN 之分類器 . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 使用 RFSN 之分類器 . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 測試結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 準確率比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 混肴矩陣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4 結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 第五章 結論與後續工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

[1] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” CoRR, vol. abs/1506.02626, 2015.
[2] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional networks through network slimming,” 2017.
[3] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,” CoRR, vol. abs/1608.06993, 2016.
[4] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle
crash causation survey,” tech. rep., 2015.
[5] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle
perception: The technology of today and tomorrow,” Transportation Research Part
C: Emerging Technologies, vol. 89, pp. 384–406, 2018.
[6] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Rain streak removal using
layer priors,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2736–2744, 2016.
[7] S.-C. Pei, Y.-T. Tsai, and C.-Y. Lee, “Removing rain and snow in a single image
using saturation and visibility features,” in 2014 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), pp. 1–6, 2014.
[8] J.-H. Kim, C. Lee, J.-Y. Sim, and C.-S. Kim, “Single-image deraining using an adaptive nonlocal means filter,” in 2013 IEEE International Conference on Image Processing, pp. 914–917, 2013.
[9] L. Peng, A. Jiang, Q. Yi, and M. Wang, “Cumulative rain density sensing network for
single image derain,” IEEE Signal Processing Letters, vol. 27, pp. 406–410, 2020.
[10] W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, “Deep joint rain detection
and removal from a single image,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1685–1694, 2017.
[11] H. Zhang and V. M. Patel, “Density-aware single image de-raining using a multistream dense network,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 695–704, 2018.
[12] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. Lau, “Spatial attentive
single-image deraining with a high quality real rain dataset,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12262–12271,
2019.
[13] X. Hu, L. Zhu, T. Wang, C.-W. Fu, and P.-A. Heng, “Single-image real-time rain
removal based on depth-guided non-local features,” IEEE Transactions on Image
Processing, vol. 30, pp. 1759–1770, 2021.
[14] Y. Wei, Z. Zhang, Y. Wang, M. Xu, Y. Yang, S. Yan, and M. Wang, “Deraincyclegan:
Rain attentive cyclegan for single image deraining and rainmaking,” 2021.
[15] Z. Liu, T. Jia, X. Xing, J. Wu, and J. Chen, “Hierarchical-level rain image generative
model based on gan,” 2023.
[16] R. Li, L. F. Cheong, and R. T. Tan, “Heavy rain image restoration: Integrating physics
model and conditional adversarial learning,” 2019.
[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.
[18] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and P. H. S. Torr, “Res2net: A new
multi-scale backbone architecture,” CoRR, vol. abs/1904.01169, 2019.
[19] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmentation,” CoRR, vol. abs/1801.04381, 2018.
[20] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, “Removing rain from
single images via a deep detail network,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1715–1723, 2017
[21] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
2015.
[22] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11,
no. 3, pp. 978–989, 2018.
[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[24] H. Zhang and V. M. Patel, “Density-aware single image de-raining using a multistream dense network,” CoRR, vol. abs/1802.07412, 2018.

無法下載圖示
全文公開日期 2027/07/30 (校外網路)
全文公開日期 2027/07/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE