簡易檢索 / 詳目顯示

研究生: 留雅凌
Ya-Ling Liu
論文名稱: 水下無線光通訊系統評估與量測
System evaluation and measurement of Underwater Optical Wireless Communication systems
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
葉建宏
Ye-Jian Hong
游易霖
Yi-Lin Yu
王祥
Wang-Xiang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 水下無線光通訊藍光雷射綠光雷射海水亂流溫度變化
外文關鍵詞: Underwater wireless optical communication, blue laser, green laser, seawater, turbulence, temperature change
相關次數: 點閱:458下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文的研究主題為水下無線光通訊系統,主要使用450nm藍光雷射及520nm綠光雷射作為主要光源,然後將1.5m長的玻璃水缸裝滿自來水,並在外側放置雷射光源打進水缸,接著為了在有限的實際空間加長傳輸距離,會在水缸設置鏡面將雷射光來回反射至對面,最後光源會經由對面外側的聚焦透鏡至光偵測器接收。經由這次實驗的傳輸損耗測量,傳輸距離越長功率損耗就越大,且與520nm綠光相比,450nm藍光雷射的接收功率較好,藍光雷射的接收率為綠光雷射接收率的2倍,光損耗率的部分綠光雷射比藍光雷射高1.75倍。為了模擬系統在海水運作時的情形,分別做了溫度變化還有水流擾動的實驗,並且用加入海水素的方式模擬海水。溫度變化的實驗則是以低溫20、22度及高溫30、33度這兩組去做對比,在20度的情況下訊號度接收率是最好的,在33度的時候訊號接收率是最差的,並在30度時接收率有明顯的變化。水流擾動的部分,清水在水流擾動的情況下訊號的接收率干擾幾乎不受影響,海水則是因為參雜了海水素,水中的雜質變多因此訊號接收率也受到很大的影響。關於模擬海水實驗的部分,在距離7.5公尺的傳輸量測實驗下,經由測量結果比較後450nm的藍光雷射與520nm綠光雷射相比,接收效率較高及光損耗較小,藍光雷射的接收率為綠光雷射的接收率的1.7倍,綠光雷射的損耗率為藍光雷射的1.2倍。經過以上實驗的測試,得出水中的雜質密度、傳輸距離還有雷射光頻段會影響到水下光通訊傳輸效率。


The main light source is a 450nm blue laser and a 520nm green laser. A 1.5m long glass tank is filled with tap water and the laser light source is placed on the outside of the tank. The light source will be received by the light detector through the focusing lens on the outside of the opposite side. The longer the transmission distance, the higher the power loss. Compared with the 520nm green light, the 450nm blue laser has a better reception power, and the reception rate of the blue laser is twice as high as that of the green laser. In order to simulate the operation of the system in seawater, experiments on temperature change and water disturbance were conducted, and seawater was simulated by adding seawater elements.The experiment of temperature change is compared with the two groups of low temperature 20, 22 degrees and high temperature 30, 33 degrees, the signal reception rate is the best at 20 degrees, the signal reception rate is the worst at 33 degrees, and the reception rate changes significantly at 30 degrees. In the part of water disturbance, the signal reception of clear water is almost unaffected by the disturbance of water current, while the signal reception of seawater is greatly affected by the impurities in the water due to the inclusion of seawater elements. In the simulated seawater experiment, the 450nm blue laser was measured at a distance of 7.5 meters, and the reception efficiency was higher and the light loss was lower when compared with the 520nm green laser. The reception rate of blue laser is 1.7 times higher than that of green laser, and the loss rate of green laser is 1.2 times higher than that of blue laser. After the above experiments, it is concluded that the impurity density, transmission distance and laser frequency band in water affect the transmission efficiency of underwater optical communication.


摘要 I Abstract II 目錄 IV 第一章、緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3論文架構 3 第二章、水下無線光通訊技術原理與特性 4 2.1 水下無線通訊原理 4 2.2 水下無線通訊特性 5 2.3 光源 7 2.3.1雷射原理 7 2.3.2 LED 與 LD 比較 8 2.4 調變 9 2.4.1調變器種類 9 2.4.2 調變系統介紹 10 2.4.3 開關鍵控與脈波振幅調變 10 2.5 T型偏壓器 11 2.6 傳輸通道 11 2.7 接收端 13 2.7.1光檢測器APD210 15 2.7.2菲涅耳透鏡 16 2.8 文獻探討 16 第三章、實驗系統基本特性量測 19 3.1 實驗設備介紹與系統構造圖 19 3.1.1 實驗系統構造圖 19 3.1.2 實驗設備 19 3.1.3 光學鏡面 22 3.2 光源對準與優化 23 3.2.1 光源對準方法 23 3.2.2 光源系統優化 23 3.3 玻璃穿透損耗 26 4.1功率計算 30 4.2理想傳輸距離計算 31 4.3功率損耗計算 31 4.3.1 3公尺水下光通訊系統 33 4.3.2 4.5公尺水下光通訊系統 34 4.3.3 6公尺水下光通訊系統 35 4.3.4 7.5公尺水下光通訊系統 37 4.4誤碼率分析 38 4.5 水下光通訊實驗模擬 38 第五章、傳輸通道干擾量測 42 5.1 海水模擬 43 5.2低溫測試結果 44 5.3 高溫測試結果 46 第六章、結論與未來展望 53 6.1 結論 53 6.2 未來展望 54 參考文獻 56

[1] Y.-A. Sambo, M. Al-Imari, F. Heliot, M.-A. Imran, “Electromagnetic emission-aware schedulers for the uplink of OFDM wireless communication systems” IEEE Transactions On Vehicular Technology vol. 66, no. 2, pp.1313-1323, Feb. 2017
[2] D.-B. Wei, C.-X. Qi, C.-P. Huang, J.-F. Chen, A.-J. Song, G.-B. Song, M. Pan, “Riding Stress Wave: Underwater Communications Through Pipeline Networks” IEEE Journal Of Oceanic Engineering vol. 46, no. 4, pp.1450-1462, Oct. 2021
[3] A. Caiti, K. Grythe, Hovem, J.-M. Jesus, S.-M. Lie, A, A. Munafo, T.-A. Reinen, A. Silva, F. Zabel, “Linking acoustic communications and network performance:integrationand experimentation of an underwater acoustic network” IEEE Journal Of Oceanic Engineering vol. 38, no. 4, pp.758-771, Oct. 2013
[4] H.-Y. Jiang, N. He, X. Liao, W. Popoola, S. Rajbhandari, “The BER Performance of the LDPC-Coded MPPM over Turbulence UWOC Channels” Photonics vol. 9, no. 5, pp.349, May. 2022
[5] http://military.people.com.cn/BIG5/n1/2019/0301/c1011-30951872.html
[6] W. Kohnen, “MTS Manned Underwater Vehicles 2017-2018 Global Industry Overview”Marine Technology Society Journal vol. 52, no. 5, pp.125-151, Sep-oct. 2018
[7] D.-C. Li, C.-C. Chen, S.-K. Liaw, S. Afifah, J.-Y. Sung, C.-H. Yeh, “Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters” Photonics vol. 8, no. 3, Nov. 2021
[8] H. Thakur, C.-T. Manimegalai, H. Bhatta, A. Iliyas, “Characterization and performance investigation of underwater optical wireless communication in static channels” Wireless Personal Communications, Feb. 2022
[9] Y. Xia, D.-M. Sullivan, “Underwater FDTD Simulation at Extremely Low Frequencies” IEEE-INST Electrical electronics Engineers Inc vol. 7, pp.661-664, 2018.
[10] G.-S. Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: overview” Sensors vol. 20, no. 8, Apr. 2020
[11] S. Arnon, “Underwater optical wireless communication network” Optical Engineering vol. 49, no. 1, DOI:10.1117/1.3280288, Jan. 2010
[12] H. Kaushal, and Kaddoum, G “Underwater optical wireless communication” IEEE Access vol. 4 , pp.1518-1547, 2016.
[13] https://zi.media/@yidianzixun/post/GLA42b
[14] https://www.keyence.com.tw/ss/products/marking/lasermarker/knowledge/principle.jsp
[15] G.-E. Weng, S.-Q. Chen, Y, Mei, Y.-J. Liu, H. Akiyama, X.-B. Hu, J.-P. Liu, B.-P. Zhang, J.-H. Chu, “Multiwavelength GaN-Based Surface-Emitting Lasers and Their Design Principles”Annalen Der Physik vol. 532, no. 1, Jan. 2020
[16] https://dop.nycu.edu.tw/ch/field_ii.html?aID=12
[17] P. Yue, P. Zhao, “Performance analysis for multi-hop UOWC system over mixtureexponential-gamma with two IM-DD fading channels”Optics Communications vol. 4, Mar. 2020
[18] https://awrcorp.com/download/faq/english/docs/Elements/biastee.htm
[19] http://w3.oc.ntu.edu.tw/chap3/node5.htm
[20] Q. Yang, Q.-M. Wu, W. Luo, W. Yao, S.-Y. Yan, J. Shen, “InGaAs/graphene infrared photodetectors with enhanced responsivity” Materials Research Express vol. 6, no. 11, Nov. 2019
[21] A. Karim, “High efficiency pin waveguide photodetectors”Indian Journal Of Physics vol. 86 , no. 4, pp.307-310, Apr. 2012
[22] Y.-Z. Chiou, J.-R. Su, Y.-K. Chang, S.-J. Huang, B.-R. Chang, C.-S. Lin, Y-C, “The characteristics of different transparent electrodes on GaN photodetectors”Materials Chemistry And Physics vol. 80 ,no.1 , pp.201-204, Apr. 2003
[23] https://www.easyatm.com.tw/wiki/%E8%8F%B2%E6%B6%85%E7%88%BE%E9%80%8F%E9%8F%A1
[24] https://www.gushiciku.cn/dc_tw/109139095
[25] P.-F. Tian, X.-Y. Liu, S.-Y. Yi, Y.-X. Huang, S.-L. Zhang, X.-L. Zhou, L.-G. Hu, L.-R. Zheng, R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED” Optics Express, Vol. 25, pp. 1193-1201, No. 2, Jan. 2017.
[26] https://www.oac.gov.tw/filedownload?file=subsidy/202004061429110.pdf&filedisplay=OAC+%28%E6%88%90%E6%9E%9C%E5%A0%B1%E5%91%8A%29.pdf&flag=doc
[27] S.-M. Berber, “An automated methodm for BER characteristics measurement“ IEEE Transactions On Instrumentation And Measurement, Vol. 53, p.575-580, 2004.
[28] https://zh.wikipedia.org/zhtw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89
[29] http://atmos0101.blogspot.com/2013/01/idl-sst.html

無法下載圖示 全文公開日期 2025/01/17 (校內網路)
全文公開日期 2025/01/17 (校外網路)
全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE