簡易檢索 / 詳目顯示

研究生: 鄒博年
Po-nien Tsou
論文名稱: 自動鑽削之順應運動及力量伺服控制器設計與實作
Compliant Motion and Force Servo Control of Automatic Drilling System: Theory and Experiment
指導教授: 黃安橋
An-chyau Huang
口試委員: 林紀穎
Chi-ying Lin
陳永峰
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 32
中文關鍵詞: 適應阻抗控制器自動鑽削控制力量控制
外文關鍵詞: Compliant Motion Control, Automatic Drilling System
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一新控制器切換策略應用於自動鑽削作業上,以解決鑽頭碰觸工件之瞬間所產生的衝擊情況,並且在鑽孔時維持一期望之切削力進行鑽削。回顧傳統自動鑽削上所使用的控制器通常為position-based PID以及force-based PID控制器兩種。使用傳統position-based PID控制器進行鑽削時,除非進刀速率降到合理範圍,否則將無法避免衝擊情況的發生;此外,使用此控制器無法在鑽孔時維持一特定切削力。另一方面,使用傳統force-based PID控制器進行自動鑽削作業時,此控制器無法讓鑽頭沿著期望的位置軌跡靠近工件,並且,當碰觸工件時將產生極大的衝擊力。因此,本文所提出之新控制器切換策略大大的改善了傳統position-based PID以及傳統force-based PID控制器應用於自動鑽削作業的缺點。
本文所提出的控制策略,其以控制器間自動互作切換之方式,以結合兩控制器特性於一體。在鑽頭行經至工件與接觸工件之瞬間,本文使用機械臂之阻抗控制的概念,使得鑽頭碰觸工件時產生順應之效果,避免衝擊情況之發生。而在鑽孔時,則使用力量PID控制器以維持一期望之切削力達到良好的鑽削性能。在阻抗控制器以及力量PID控制器切換部分,本文使用了CMP函數當作切換之依據,藉此達到bumpless transfer的切換目標。由於實際的鑽床系統充滿了許多不確定性,因此本文在此使用了適應阻抗控制器代替原本的阻抗控制,並經過嚴謹的數學推導,證明其可行性。最後,本文亦以實驗來證明新控制器切換策略之控制效果並與傳統的控制方法做比較。


This paper focuses on the automatic drilling controller design which is able to avoid the impact force when the drill bit hits the work-piece and can maintain a constant force during cutting process. It is noted that in the classical position-based PID control of the automatic drilling process, the impact force is unavoidable unless the feed rate is lowered to a considerable amount. Meanwhile, the cutting force can not be regulated to a desired value. On the other hand, the conventional force-based PID controller in the automatic drilling system may not guide the drill bit to the work-piece in a desirable trajectory, and a significant impact is also unavoidable. Therefore, the controller proposed in this thesis gives enormous improvement than both the position-based as well as the force-based PID controllers.
The strategy proposed in this thesis employs the impedance control concept from robotics to have a compliant interaction between the drill bit and the work-piece so that the impact force is properly accommodated. The force-based PID is used to regulate a desired force to give proper cutting performance. The switching between the impedance controller and the force-based PID is accomplished by using a CMP function so that a bumpless transfer can be obtained. Due to the uncertainties in the system model, the impedance controller is developed in its adaptive version with rigorous mathematical justifications. To verify the effectiveness of the design, an experimental setup is built. The results are satisfactory compared with traditional designs.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 V 第一章 緒論 1 第二章 控制器設計 7 2.1適應阻抗控制 8 2.1.1系統參數皆已知情況 9 2.1.2系統參數皆未知情況 10 2.2 PID力量控制 13 2.3新控制器切換策略 14 第三章 實驗設備與實驗結果 17 3.1實驗架構 17 3.2實驗規劃 20 3.3實驗結果 20 3.3.1傳統position-based PID控制器 20 3.3.2傳統force-based PID控制器 23 3.3.3新控制器切換策略 26 第四章 結論與未來展望 29 參考文獻 30

[1] G. Alici and R. W. Daniel, "Robotic drilling under force control: execution of a task," in Proceedings of the IEEE/RSJ/GI International Conference on Advanced Robotic Systems and the Real World, vol. 3, pp. 1618-1625, 1994.
[2] G. Alici, "A systematic approach to develop a force control system for robotic drilling," International Journal of Industrial Robot, vol. 26, pp. 389 - 397, 1999.
[3] R. Haber-Haber, R. Haber, M. Schmittdiel, and R. M. del Toro, "A classic solution for the control of a high-performance drilling process," International Journal of Machine Tools and Manufacture, vol. 47, pp. 2290-2297, 2007.
[4] R. Stone and K. Krishnamurthy, "A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates," International Journal of Machine Tools and Manufacture, vol. 36, pp. 985-1003, 1996.
[5] J.-B. Kim, S.-J. Lee, and Y.-P. Park, "Development of a drilling process with torque stabilization," Journal of Manufacturing Systems, vol. 13, pp. 435-441, 1994.
[6] J.-B. Kim, S.-J. Lee, and Y.-P. Park, "Stable and efficient drilling process by active control of the thrust force," Mechanical Systems and Signal Processing, vol. 8, pp. 585-595, 1994.
[7] K. Youcef-Toumi and D. A. Gutz, "Impact and force control," in Proceedings of 1998 IEEE Internatioanl Conference on Robotics and Automation, vol. 1, pp. 410-416, 1989.
[8] M. H. Raibert and J. J. Craig, "Hybrid Position/Force Control of Manipulators," Journal of Dynamic Systems, Measurement, and Control, vol. 103, pp. 126-133, 1981.
[9] N. Hogan, "Impedance Control: An Approach to Manipulation: Part I—Theory," Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-7, 1985.
[10] N. Hogan, "Impedance Control: An Approach to Manipulation: Part II—Implementation," Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8-16, 1985.
[11] N. Hogan, "Impedance Control: An Approach to Manipulation: Part III—Applications," Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17-24, 1985.
[12] R. Kelly, R. Carelli, M. Amestegui, and R. Ortega, "On adaptive impedance control of robot manipulators," in Proceedings of 1989 IEEE International Conference on Robotics and Automation, vol. 1, pp. 572-577, 1989.
[13] R. R. Y. Zhen and A. A. Goldenberg, "An adaptive approach to constrained robot motion control," in Proceedings of 1995 IEEE International Conference on Robotics and Automation ,vol. 2, pp. 1833-1838, 1995.
[14] J. J. E. Slotine and W. Li, "Adaptive strategies in constrained manipulation," in Proceedings of 1987 IEEE International Conference on Robotics and Automation, pp. 595-601, 1987.
[15] W. S. Lu and Q. H. Meng, "Impedance control with adaptation for robotic manipulations," IEEE Transactions on Robotics and Automation, vol. 7, pp. 408-415, 1991.
[16] 林珈峰, "馬達動態行為之阻抗控制研究," 國立台灣科技大學機械工程研究所, 碩士學位論文, 2007.
[17] 陳威帆, "直流馬達之適應性運動控制研究," 國立台灣科技大學機械工程研究所, 碩士學位論文, 2006.
[18] R. P. Paul, "Problems and research issues associated with the hybrid control of force and displacement," in Proceedings of 1987 IEEE International Conference on Robotics and Automation, pp. 1966-1971, 1987.
[19] A.-C. Huang and Y.-S. Kuo, "Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds," International Journal of Control, vol. 74, pp. 252-264, 2001.
[20] 郭有順, "不確定時變系統之適應控制研究," 國立台灣科技大學機械工程研究所, 博士學位論文, 2002.
[21] 黃安橋, "適應控制理論," 國立台灣科技大學機械工程研究所, 上課講義, 2012.
[22] 李怡萱, "一維機械系統之運動及力量伺服控制與實作," 國立台灣科技大學機械工程研究所, 碩士學位論文, 2012.

無法下載圖示 全文公開日期 2019/01/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE