簡易檢索 / 詳目顯示

研究生: 李佑琳
You-lin Li
論文名稱: 嵌入式觸覺感測夾爪與機械手臂之整合
The Integration of Embedded Tactile Robot Gripper and Robotic Manipulator
指導教授: 黃緒哲
Shiuh-jer Huang
口試委員: 周瑞仁
Jui-jen Chou
郭重顯
Chung-hsien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 133
中文關鍵詞: 五軸機械手臂二指夾爪嵌入式系統力量控制FPGAArduino
外文關鍵詞: intelligent gripper
相關次數: 點閱:211下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要研製一台整合智慧型微控制晶片嵌入式二自由度夾爪與五自由度工業用機械手臂之機器人系統架構。在此架構下,利用機械手臂進行空間位置的定位,而智慧型夾爪則進行觸覺力量感測與控制,此外在兩個自獨立的系統架構間建立I^2 C溝通協定。機械手臂先定位到達目標物之空間位置,再呼叫智慧型夾爪進行觸覺感測,藉由適當之正向力夾持,以避免夾取物因過大夾持正壓力而受到破壞。然而機械手臂在搬運的過程中,因為馬達與機構之震動,可能導致夾持物產生滑移現象,為了避免此現象發生,我們可以透過剪切力量測來進行夾持力的調整,以提升夾持物體時之不確定擾動的強健性。
    嵌入式智慧型二自由度夾爪硬體方面是以Arduino Nano 3.0為控制核心,並配合自製的馬達驅動電路、電位計、I^2 C多工器等等,另外搭配FSR壓阻式力量感測器以及二自由度電容式剪力感測器之結合以完成正壓力與剪切力之量測。軟體方面主要是利用FSMC控制理論來設計位置與力量的控制器架構,完成不同軟硬物體之夾持力判別與滑動監控補償之智慧型決策。
    機械手臂硬體控制架構是以ALTERA Nios II Embedded Development Kit(以
    下簡稱Nios II 發展板)為核心,在Nios II 發展板內以數位硬體電路實現訊號擷取與輸出控制訊號之功能,數位控制訊號由Nios II 發展板送至自製直流馬達驅動電路以驅動各軸馬達。數位電路包含五組光學編碼器信號偵測、四倍頻寬解碼電路、極限開關訊號偵測、五組脈波寬度調變信號輸出、I^2 C通訊架構、IR接收解碼器、SDRAM控制模組等等。軟體部分則是在NiosII之整合開發環境介面編寫系統之人機介面、正反運動學方程式計算、點對點運動控制、控制器架構、連續運動軌跡計算、機械手臂運動之程序控制等等。


    In this thesis, an two degrees of freedom intelligent gripper with embedded micro-control chip is designed and integrated with an five degrees of freedom industrial robotic arm. The robotic arm monitors end-effector position, and intelligent gripper control the tactile force. I^2 C communication protocol is established for these two independent systems structure. The robotic control system manipulator the end-effector of robotic arm to arrive the spatial target location firstly, then sends asignal by I^2 C to intelligent gripper. The intelligent gripper receives command to control the tactile force. Appropriate clamping force should be specified to avoid destroy objects due to excessive clamping force. In addition, the clamped object may slip during robotic arm motion due to dynamic variation. The clamping force should be adjusted based on measuring shear force variation. This control strategy would enhance the robustness in the robotic future operations.
    Arduino Nano development board is chosen as the intelligent gripper control kernel. This control system contains homemade motor drive circuit, potentiometer, I^2 C multiplexer, FSR force sensor and capacitive shear sensor etc. The intelligent gripper's tactile force control is based on FSR and capacitive tactile sensor feedback. The fuzzy sliding mode control is employed to design clamping force, shear force and position controllers, respectively.
    Robotic arm control architecture adopt ALTERA FPGA as control kernel. The Nios II development board use digital hardware circuits to achieve signal acquisition and output control function. FPGA digital hardware contain decoder, filter, PWM, I^2 C, IR and SDRAM controller etc. Nios II software contain user interface, kinematics formula, FSMC algorithm etc.

    摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機與目的 1.4 論文架構 第二章 系統架構 2.1 機械手臂 2.1.1 機械手臂系統架構 2.1.2 Nios II發展板 2.1.3 機械手臂 2.1.4 馬達驅動電路 2.1.5 同步動態隨機存取記憶體 2.1.6 液晶顯示器 2.1.7 紅外線遙控 2.1.8 脈波寬度調變電路 2.1.9 內部整合電路通訊協定 2.1.10 個人電腦 2.1.11 NIOS II 微處理器之規劃 2.2 二自由度嵌入式夾爪 2.2.1 夾爪系統架構 2.2.2 Arduino 2.2.3 夾持器機構設計 2.2.4 嵌入式夾爪電路整合 2.2.5 壓阻式力量感測器 2.2.6 電容式觸覺感測器 2.3 特殊功能夾片 2.3.1 夾片機構 2.3.2 馬達制動器 第三章 機械手臂運動學分析 3.1 連桿參數與座標 3.2 機械手臂運動學分析 3.3 機械手臂反運動學 3.3.1 反運動學推導 3.4 梯型速度規劃 第四章 控制理論 4.1 基本模糊理論 4.1.1 模糊集合與隸屬函數 4.1.2 基本模糊控制器架構 4.2 滑動模式控制 4.2.1 滑動模式控制原理 4.2.2 滑動模式控制理論基礎 4.3 模糊滑動模式控制 4.4 控制策略 第五章 實驗結果與討論 5.1 模糊滑動模式控制器(FSMC)控制機械手臂實驗 5.1.1 模糊滑動模式控制器之實現 5.1.2 機械手臂FSMC之實驗結果 5.2 FSMC控制器之夾爪實驗比較 5.2.1 夾持力控制之實驗結果 5.2.2 位置控制之實驗結果 5.2.3 夾片剪力測試之實驗結果 5.2.4 下壓力控制之實驗結果 5.2.5 夾爪剪力補償應用之實驗結果 5.2.6 USB裝配應用之實驗結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    【1】A. Rupp and S. A. Velastin, “A Gripper and Sensor System for Controlled Slip and Force,” IEEE International Industrial Electronics, Santiago, Chile, pp. 329-334, 25-27 May 1994.
    【2】ALTERA, “DE2-115 User Manual,” ALTERA Corporation, 2010.
    【3】B. M. Jau, “Dexterous Telemanipulation with Four Fingered Hand System,” IEEE Robotics and Automation International Conf., Nagoya, Japan, vol. 1, pp. 338-343, 21-27 May 1995.
    【4】C. Byungiune, C. H. Ryeol, and K. Sungchul, “Development of Tactile Sensor for Detecting Contact Force and Slip,” IEEE Intelligent Robots and Systems International Conf., Center Edmont, Canada, pp. 2638- 2643, 2-6 Aug. 2005.
    【5】C. M. Seguna and M. A. Saliba, ”The Mechanical and Control System Design of a Dexterous Robotic Gripper,” IEEE Electronics, Circuits and Systems International Conf. ICECS, Malta, vol. 3, pp. 1195-1201, 2-5 Sep. 2001.
    【6】EVERLIGHT, “Infrared Remote-control Receiver Module,” EVERLIGHT Corporation, 2000.
    【7】G. Cannata and M. Maggiali, “An Embedded Tactile and Force Sensor for Robotic Manipulation and Grasping,” IEEE-RAS Humanoid Robots International Conf., Tsukuba, Japan, pp. 80- 85, 5-5 Dec. 2005.
    【8】G. Casalino, F. Giorgi, A.Turetta, and A. Caffaz,“Embedded FPGA-based Control of a Multifingered Robotic Hand,” IEEE Robotics and Automation International Conf. ICRA, Taipei, Taiwan, vol. 2, pp. 2789-2791, 14-19 Sept. 2003.
    【9】H. Liu, K. Wu, P. Meusel, G. Hirzinger, M. H. Jin, Y. W. Liu, S. W. Fan, T. Lan and Z. P. Chen, “A Dexterous Humanoid Five-fingered Robotic Hand,” IEEE Internationsl Robot and Human Interactive Conf., Munich, Germany, pp. 371-376, Aug. 2008.
    【10】H. Yussof and J. Wada; M. Ohka, “A New Control Algorithm Based on Tactile and Slippage Sensation for Robotic Hand,” World Automation Congress Conf. WAC, Kobe, Japan, pp. 1-6, 19-23 Sept. 2010.
    【11】H. Yussof and M. Ohka, ”Application of Stiffness Control Algorithm for Dexterous Robot Grasping using Optical Three-Axis Tactile Sensor System,” Micro-NanoMechatronics and Human Science Conf. MHS, Nagoya, Japan, pp. 472-476, 9-11 Nov. 2009.
    【12】H. Yussof, S. C. Abdullah, and M. Ohka, ”Development of Optical Three-Axis Tactile Sensor and its Application to Robotic Hand for Dexterous Manipulation Tasks,” Mathematical/Analytical Modelling and Computer Simulation Asia International Conf. AMS, Kota Kinabalu, Malaysia, pp. 624-629, 26-28 May 2010.
    【13】INTERLINK ELECTRONICS, “FSR Force Sensing Resistor Integration Guide and Evaulation Parts Catalog,” INTERLINK ELECTRONICS Coporation.
    【14】J. G. Webster, Tactile sensors for robotics and medicine, John Wiley & Sons, 1988.
    【15】J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991.
    【16】J. R. Amend, E. M. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A Positive Pressure Universal Gripper Based on the Jamming of Granular Material,” IEEE Trans. Robotics, vol. 28, no. 2, pp. 341-350, April 2012.
    【17】K. J. Waldron and G. L. Kinzel, Kinematics, Dynamics, and Design of Machinery, 2nd ed. Taiwan: John Wiley & Sons, 2004, ch.5.
    【18】L. W. Tsai, Robot Analysis – The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, 1999.
    【19】L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy System, vol. 1, no. 2, pp.146-155, May 1993.
    【20】M. Dollar and R. D. Howe, “Towards Grasping in Unstructured Environments: Grasper Compliance and Configuration Optimization,” IEEE/RSJ International Intelligent Robots and Systems Conf., Cambridge, USA, vol. 19, pp. 3410-3416, 7-31 Oct. 2003.
    【21】M. F. Barsky, D. K. Lindner, and R. O. Claus, “Robot Gripper Control System using PVDF Piezoelectric Sensors,” IEEE Trans. Ultrasonic, Ferroelectrics and Frequency Control, vol. 36, no. l, pp. 129-134, Jan. 1989.
    【22】M. J. E. Salami, N. Nassiri, and S. N. Sidek, ”Design of Intelligent Multifinger Gripper for A Robotic Arm Using A DSP-based Fuzzy Controller,” Proceedings of TENCON Conf., Kuala Lumpur, Malaysia, vol. 3, pp. 348-353, 24-27 Sep. 2000.
    【23】MITSUBISHI, “RV-M2 INSTRUCTION MANUAL,” MITSUBISHI Corporation, 1993.
    【24】NXP, “2-channel I^2C-bus multiplexer,” NXP Corporation, 2009.
    【25】P. Dario and D. D. Rossi, “Tactile Sensors and The Gripping Challenge,” IEEE Trans. Spectrum, vol. 22, no 8, pp. 46-52, Aug. 1985.
    【26】P. He, M. H. Jin, L. Yang, R. Wei, Y. W. Liu, H. G. Cai, H. Liu, N. Seitz, J. Butterfass and G. Hirzinger, “High Performance DSP/FPGA Controller for Implementation of HIT/DLR Dexterous Robot Hand,” IEEE Robotics and Automation International Conf. ICRA, New Orleans, USA, vol. 4, pp. 3397-3402, 26 April~1 May 2004.
    【27】PHILIPS, “THE I^2 C-BUS SPECIFICATION,” PHILIPS Corporation, 2000.
    【28】R. C. Goertz and R. Thompson, “Electronically Controlled Manipulator,” Nucleonics, vol. 12, no. 11, pp. 46-47, 1954.
    【29】R. C. Luo, K. L. Su, and S. H. H. Phang, “An Implementation of Gripper Control Using The New Slipping Detector by Multisensor Fusion Method,” IEEE Industrial Electronics Society Conf. IECON, Nagoya, Japan, vol. 2, pp. 888-893, 2000.
    【30】R. D. Howe and M. R. Cutkosky, “Sensing Skin Acceleration for Texture and Slip Perception,” IEEE Robotics and Automation International Conf., Scottsdale, Arizona, USA, vol. 1, pp. 145-150, 14-19 May 1989.
    【31】R. D. Lorenz, K. M. Meyer, and D. M. Van De Riet, “A Novel, Compliant, Four Degree-of-Freedom, Robotic Fingertip Sensor,” IEEE Trans. Industry Applications, vol. 26, no. 4, pp. 613-619, Jul./Aug. 1990.
    【32】R. Masuda, K. Hasegawa, and K. Osako, “Slip sensor of Industrial Robot and Its Application,” Electrical Engineering in Japan, vol. 96, no. 5, pp. 129-136, Oct. 1976.
    【33】R. Palm, “Robust Control by Fuzzy Sliding Mode,” Automatica, vol. 30, no. 9, pp.1429-1437, Sept. 1994.
    【34】R. Palm, “Sliding Mode Fuzzy Control,” IEEE Fuzzy System Conf., San Diego, Canada, pp.519-526, March 1992.
    【35】S. C. Lin and Y. Y. Chen, “Design of Adaptive Fuzzy Sliding Mode Control for Nonlinear System Control,” IEEE Fuzzy Systems, Orlando, USA, vol. 1, pp.35-39, June 1994.
    【36】S. J. Lederman and R. L. Klatzky, “Hand Movements: A Window into Haptic Object Recognition,” Cognitive Psychology, vol. 19, no. 3, pp. 342-368, July 1987.
    【37】S. W. Kim and J. J. Lee, “Design of A Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, vol.71, pp.359-367, 1995.
    【38】Shayang, “DC Carbon-brush motors RA13WGM 03&04 TYPE,” Shayang Corporation.
    【39】T. A. Chase and R. C. Luo, “A Thin-Film Flexible Capacitive Tactile Normal / Shear Force Array Sensor,” IEEE Industrial Electronics, Control, and Instrumentation International Conf. IECON, Orlando, USA, vol. 2, pp. 1196-1201, 6-10 Nov. 1955.
    【40】T. Pham and W. B. Heginbotham, Robot Grippers, IFS Ltd, UK, 1986.
    【41】TEXAS INSTRUMENTS, “L293D Quadruple Half-H DRIVERS,” TEXAS INSTRUMENTS Corporation, 2002.
    【42】TEXAS INSTRUMENTS, “LMD18200 3A, 55V H-Bridge,” TEXAS INSTRUMENTS Corporation, 2011.
    【43】U. Meshram; P. Bande, P. A. Dwaramwar, and R. R. Harkare, “Robot Arm Controller Using FPGA,” International Multimedia, signal Processing and Communication Technologies Conf. IMPACT, Aligarh, India, pp. 8-11, 14-16 March 2009.
    【44】V. Dubey and R. Crowder, “Grasping and Control Issues in Adaptive End Effectors,” ASME Design Engineering Technical Conf., Salt Lake City, Utah, USA, 28 Sep.-2 Oct. 2004.
    【45】W. Friedrich, P. Lim, and H. Nicholls, “Sensory Gripping System for Variable Products,” IEEE International Robotics and Automation Conf. ICRA, San Francisco, California, USA, vol. 2, pp. 1982-1987, 24-28 Apr. 2000.
    【46】X. Min, Z. Wenzhang, and Z. Ying, “Design of a Reconfigurable Robot Controller Based on FPGA,” IEEE Embedded Computing International Conf., Beijing, China, pp. 216-222, 6-8 Oct. 2008.
    【47】X. Song, H. Liu, J. Bimbo, K. Althoefer, and L. D. Seneviratne, ”A Novel Dynamic Slip Prediction and Compensation Approach Based on Haptic Surface Exploration,” IEEE/RSJ Intelligent Robots and Systems International Conf. IROS, Vilamoura, Portugal, pp. 4511-4516, 7-12 Oct. 2012.
    【48】Y. S. Kung and G. S. Shu, “Development of a FPGA-based Motion Control IC for Robot Arm,” IEEE Industrial Technology International Conf. ICIT, Hong Kong, pp. 1397-1402, 14-17 Dec. 2005.
    【49】巫憲欣, “以系統晶片發展具機器視覺之機械手臂運動控制,” 碩士論文, 國立臺灣科技大學機械工程系, 2006
    【50】系統晶片設計使用Quartus II, 全華圖書股份有限公司, 2009
    【51】Verilog FPGA 晶片設計, 全華圖書股份有限公司, 2008
    【52】SOPC 設計實務, 全華科技圖書股份有限公司, 2006
    【53】喬執中,“力量控制於機械手臂運動之應用,”碩士論文, 國立中央大學 機械工程研究所, 2001
    【54】黃安橋教授, “非線性系統上課講義,” 國立臺灣科技大學機械工程研究所
    【55】黃緒哲教授, “智慧型控制系統上課講義,” 國立臺灣科技大學機械工程研究所

    QR CODE