簡易檢索 / 詳目顯示

研究生: 周贇輝
Yun-Hui Zhou
論文名稱: 定雷諾數下渦旋引致球體振動之直接施力沉浸邊界法數值模擬
Direct-forcing immersed boundary modeling of vortex-induced vibration of sphere at moderate Reynolds number
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 洪子倫
林怡均
陳明志
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 54
中文關鍵詞: 直接施力沉浸邊界法渦旋引致振動流固耦合鎖相放大
外文關鍵詞: Sphere
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用結合了虛擬力的沉浸邊界法來模擬一個球體受均勻流場產生的渦旋所引起的振動現象。由結構物後方渦旋逸散所產生的不穩定的流體作用力會造成結構物的振動,尤其是在鎖相放大區域可能會造成結構物的損壞。在當前研究中,低雷諾數下均勻流場中的球體可以在僅垂直方向及同時具有與流動平行和垂直兩個方向上運動。此外,流場入流速度將作為本文對於渦旋引致振動效應的主要研究因素,數值模擬的球體所受之氣動力係數可以在時域以及頻域當中呈現。在鎖相放大的遲滯驟升部分可以求得球體所受升阻力係數之極大值,此時渦旋振蕩頻率與球體自然頻率近乎相等,振動處於軟性鎖相放大模式。髮夾模式和螺旋模式會在不同入流速度引起的振動區域被分別發現。此次數值模擬證實了沉浸邊界法對研究渦旋引致球體振動具有可行性。


A numerical study of the vortex-induced vibration (VIV) of an elastically mounted sphere using the direct-forcing immersed boundary (DFIB) method incorporating the virtual force term is undertaken. The fluctuating hydrodynamic forces may cause damage when a solid structure interacts with fluid flow. Especially in the so-called lock-in situation, the vibration phenomenon results in the failure of the structure. The present study shows that a dynamically mounted sphere is allowed to vibrate transversely only or both in the in-line and the transverse directions in a uniform flow at a moderate Reynolds number of 300. The effect of reduced velocity on VIV is discussed in this study. Aerodynamic coefficients of a freely vibrating sphere are analyzed in time and spectral domains. The maximums of the lift coefficient and the drag coefficient show hysteresis jump at the low end of the lock-in region. The ratio between the vortex shedding frequency and the natural frequency of the structure reveals the so-called soft lock-in. Moreover, two shedding mode hairpin and spiral mode are found in different vibration response regimes. This study proves the capability of the proposed DFIB model can be useful for the investigation of VIV of the structure.

1 INTRODUCTION 1 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 8 2.1 Governing Equations of flow motion . . . . . . . . . . . . . . . . . . . . 9 2.2 Equations of motion for rigid body . . . . . . . . . . . .. . . . . . . . . 10 2.3 Direct-forcing immersed boundary method . . . . . . . . . . . . . . . . . . 12 2.4 Procedures for fluid-structure interaction . . . . . . . . . . . . . . . . 13 2.5 Grid generation and computational time and validation . . . . . . . . . . . 14 3 RESULTS AND DISCUSSION 17 3.1 Transverse vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Flow patterns and modes of vortex shedding . . . . . . . . . . ...... . . 19 3.1.2 Influence of reduced velocity on the sphere response . . . . . .... . . . 21 3.2 In-line and transverse vibrations . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Flow patterns and modes of vortex shedding . . . . . . . ...... . . . . . 23 3.2.2 Influence of reduced velocity on the sphere response . . . . .... . . . . 24 3.3 Transverse vibrations behind a smaller stationary sphere . . . . .. . . . . 25 3.3.1 Influence of a smaller sphere on the sphere response in tandem arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Influence of gap and diameter of small sphere on the vibrating sphere response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 CONCLUSIONS AND FUTURE WORK 29 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Allen, D. W., and Henning, D. L. 2003. Vortex-induced vibration current tank tests of two equal-diameter cylinders in tandem. Journal of Fluids and Structures, 17(6), 767-781.
Assi, G. R. S., Meneghini, J. R., Aranha, J. A. P., Bearman, P. W., and Casaprima, E.
(2006). Experimental investigation of flow-induced vibration interference between two
circular cylinders. Journal of Fluids and Structures, 22(6-7), 819-827.
Bearman, P. W. 1984. Vortex shedding from oscillating blu bodies. Annual review of fluid mechanics, 16(1), 195-222.
Behara, S., and Sotiropoulos, F. 2016. Vortex-induced vibrations of an elastically mounted sphere the e ects of Reynolds number and reduced velocity. Journal of Fluids and Structures, 66, 54-68.
Behara, S., Borazjani, I., and Sotiropoulos, F. 2011. Vortex-induced vibrations of an
elastically mounted sphere with three degrees of freedom at Re= 300 hysteresis and
vortex shedding modes. Journal of Fluid Mechanics, 68.
Borazjani, I., and Sotiropoulos, F. 2009. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity{wake interference region. Journal of fluid mechanics, 621, 321-364.
Bourguet, R., Karniadakis, G. E., and Triantafyllou, M. S. 2011. Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of fluid mechanics, 677, 342-382.
Chern, M. J., Hsu, W. C., and Horng, T. L. 2012. Numerical prediction of hydrodynamic
loading on circular cylinder array in oscillatory flow using direct-forcing immersed
boundary method. Journal of Applied Mathematics.
Constantinescu, G., and Squires, K. (1999). LES and DES investigations of turbulent flow over a sphere. In 38th Aerospace Sciences Meeting and Exhibit (p. 540).
Giacobello, M., Ooi, A., and Balachandar, S. (2009). Wake structure of a transversely
rotating sphere at moderate Reynolds numbers. Journal of Fluid Mechanics, 621, 103-
130.
Govardhan, R. N., and Williamson, C. H. K. 2005. Vortex-induced vibrations of a sphere. Journal of Fluid Mechanics, 531, 11-47.
Govardhan, R., and Williamson, C. H. 1997. Vortex-induced motions of a tethered sphere. Journal of Wind Engineering and Industrial Aerodynamics, 69, 375-385.
Hunt, J. C., Wray, A. A., and Moin, P. 1988. Eddies, streams, and convergence zones in turbulent flows.
Ilinca, F., and Hetu, J. F. 2012. Numerical simulation of fluid-solid interaction using an immersed boundary nite element method. Computers and Fluids, 59, 31-43.
Issa, R. I. 1986. Solution of the implicitly discretised fluid flow equations by operatorsplitting. Journal of computational physics, 62(1), 40-65.
Jauvtis, N., and Williamson, C. H. K. 2004. The e ect of two degrees of freedom on
vortex-induced vibration at low mass and damping. Journal of Fluid Mechanics, 509,
23-62.
Jauvtis, N., Govardhan, R., and Williamson, C. H. K. 2001. Multiple modes of vortex-induced vibration of a sphere. Journal of Fluids and Structures, 15(3-4), 555-563.
Johnson, T. A., and Patel, V. C. 1999. Flow past a sphere up to a Reynolds number of
300. Journal of Fluid Mechanics, 378, 19-70.
Khalak, A., and Williamson, C. H. 1999. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of fluids and Structures, 13(7-8),813-851.
Khalak, A., and Williamson, C. H. K. (1996). Dynamics of a hydroelastic cylinder with
very low mass and damping. Journal of Fluids and Structures, 10(5), 455-472.
Khalak, A., and Williamson, C. H. K. (1997). Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures, 11(8),973-982.
Kim, D. (2009). Laminar flow past a sphere rotating in the transverse direction. Journal of mechanical science and technology, 23(2), 578-589.
Lee, H., Hourigan, K., and Thompson, M. C. 2013. Vortex-induced vibration of a neutrally buoyant tethered sphere. Journal of Fluid Mechanics, 719, 97-128.
Noor, D. Z., Chern, M. J., and Horng, T. L. 2009. An immersed boundary method to
solve fluid-solid interaction problems. Computational Mechanics, 44(4), 447-453.
Ormieres, D., and Provansal, M. 1999. Transition to turbulence in the wake of a sphere. Physical review letters, 83(1), 80.
Parkinson, G. 1989. Phenomena and modelling of flow-induced vibrations of blu bodies.
Progress in Aerospace Sciences, 26(2), 169-224.
Patankar, S. and Spalding, D. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), pp.1787-1806.
Poon, E. K., Ooi, A. S., Giacobello, M., and Cohen, R. C. (2010). Laminar flow structures from a rotating sphere: E ect of rotating axis angle. International Journal of Heat and Fluid Flow, 31(5), 961-972.
Prasanth, T. K., Behara, S., Singh, S. P., Kumar, R., and Mittal, S. 2006. E ect of
blockage on vortex-induced vibrations at low Reynolds numbers. Journal of Fluids and
Structures, 22(6-7), 865-876.
Sarpkaya, T. 1979. Vortex-induced oscillations a selective review. Journal of applied mechanics, 46(2), 241-258.
Sarpkaya, T. 2004. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of fluids and structures, 19(4), 389-447.
Violette, R., De Langre, E., and Szydlowski, J. 2007. Computation of vortex-induced
vibrations of long structures using a wake oscillator model: comparison with DNS and
experiments. Computers and structures, 85(11-14), 1134-1141.
Willden, R. H. J., and Graham, J. M. R. 2001. Numerical prediction of VIV on long flexible circular cylinders. Journal of Fluids and Structures, 15(3-4), 659-669.
Williamson, C. H. K., and Govardhan, R. 1997. Dynamics and forcing of a tethered sphere in a fluid flow. Journal of fluids and structures, 11(3), 293-305.
Williamson, C. H. K., and Govardhan, R. 2004. Vortex-induced vibrations. Annu. Rev.
Fluid Mech., 36, 413-455.
Yamamoto, C. T., Meneghini, J. R., Saltara, F., Fregonesi, R. A., and Ferrari Jr, J. A. 2004. Numerical simulations of vortex-induced vibration on flexible cylinders. Journal of fluids and structures, 19(4)
Yusof, J. M. 1997. Interaction of massive particles with turbulence. Ph.D Thesis, Cornell University, USA

無法下載圖示 全文公開日期 2024/01/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE