簡易檢索 / 詳目顯示

研究生: 廖昱愷
Yu-Kai Liao
論文名稱: P3HT/CeO2 複合材料界面特性與光性質探討
Study of Optical Properties and Interface Structure of P3HT/CeO2 Composite
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Kuo, Dong-Hau
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 101
中文關鍵詞: 活性層複合材料共軛高分子電荷轉移奈米顆粒退火
外文關鍵詞: active layer, composite, cojugated polymer, charge transfer, nanoparticles, annealing
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為開發合適的太陽能電池活性層(active layer)材料,本研究將共軛高分子P3HT及CeO2 奈米顆粒所形成的有機-無機複合材料進行表面/界面改質。區域規整共軛高分子P3HT具備優良導電性與結晶性,作為複合材料的電子供體(donor);而氧化物CeO2因其優良的電子遷移率、熱穩定性以及其尺寸可控制性,則作為電子受體(accepter)。我們在製程中不同階段進行退火步驟,經由表面/界面改質,達到促進複合物中供體-受體間的界面電荷轉移作用。所採用的步驟包括: (1) 在形成複合材料前,將CeO2 奈米顆粒於不同氣氛下進行熱處理;以及 (2) 在形成P3HT/CeO2 NPs複合材料後,於不同溫度下進行熱處理。
實驗結果指出,P3HT/CeO2 NPs複合材料在經過所使用的兩種退火步驟後,CeO2 NPs尺寸及分布並無明顯變化,但拉曼與X光吸收光譜分析結果則顯示P3HT與CeO2間的交互作用有增強的現象。進一步利用光激螢光光譜(PL)估算材料之電荷轉移效率(?),結果指出,P3HT/CeO2 NPs複合材料經適當的表面/界面改質後,樣品的電荷轉移效率可提升。若在形成複合材料前先將CeO2 奈米顆粒在空氣下進行退火,所得到的複合物其電荷轉移效率可由0.8提升到0.93;若在形成複合材料後於120°C下進行退火,則電荷轉移效率可提升至0.94。


In order to develop suitable active layer materials for solar cells, in this study, the surface/interface of P3HT/CeO2 organic-inorganic composite materials was modified by various annealing process. In this composite material, the regioregular conjugated polymer P3HT serves as an electron donor due to its excellent electrical conductivity and crystallinity, while CeO2 serves as an electron acceptor due to its excellent electron mobility, thermal stability and dimensional controllability. Different annealing process were carried out to promote the charge transfer between the donor-acceptor interfaces, which included: (1) heat treatment of CeO2 nanoparticles in different atmospheres before the formation of composite material; and (2) heat treatment at different temperatures after the P3HT/CeO2 NPs composite material is formed.
The experimental results showed that the annealing process did not resulted in significant changes in the size and distribution of CeO2 NPs in the composite material. However, both Raman and X-ray absorption spectroscopy analysis indicated that the interaction between P3HT and CeO2 was enhanced. The charge transfer efficiency (?) of the material was estimated according to the photo-induced fluorescence spectroscopy (PL) results. It is demonstrated that with the annealing of CeO2 nanoparticles in air before composite formation, the charge transfer efficiency of the composite can be enhanced from 0.8 to 0.93. The annealing the composite at 120°C could further enhance the charge transfer efficiency to 0.94.

摘要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧與理論介紹 5 2.1 有機-無機太陽能電池 5 2.1.1 活性層(Active layer)之結構 6 2.1.2 激子擴散機制 8 2.2 共軛聚合物-金屬氧化物 12 2.2.1 共軛聚合物-金屬氧化物奈米複合材料 12 2.2.2 合成共軛聚合物-金屬氧化物奈米複合材料 14 2.3 共軛高分子材料 17 2.3.1 共軛高分子的半導體性質 17 2.3.2 共軛聚合物的摻雜 19 2.3.3 共軛聚合物的光學性質 21 2.3.4 聚噻吩(Poly(thiophene)) 22 2.4 二氧化鈰奈米顆粒 23 2.4.1 二氧化鈰基本性質 23 2.4.2 共沉澱法製備二氧化鈰奈米顆粒 25 第三章 實驗方法 29 3.1 實驗流程 29 3.1.1 二氧化鈰奈米顆粒之製備與退火 29 3.1.2  P3HT:CeO2納米粒子混合物 31 3.1.3  滴鑄法製備薄膜 32 3.1.4  P3HT/CeO2奈米粒子混合物之退火熱處理 33 3.2 性質分析 34 3.2.1 X光繞射分析 34 3.2.2 穿透式電子顯微鏡 35 3.2.3 拉曼光譜分析 36 3.2.4 UV-Visible 吸收光譜 38 3.2.5 光激螢光光譜 39 3.2.6 X光吸收光譜 41 第四章 結果與討論 48 4.1 以共沉澱法製備之CEO2奈米顆粒 49 4.1.1 XRD分析 49 4.1.2 TEM分析 49 4.1.3 XAS分析 51 4.2 以不同退火環境退火之CEO2與P3HT混合之結果 53 4.2.1 XRD分析 53 4.2.2 TEM分析 55 4.2.3 Raman分析 57 4.2.4 XAS分析 61 4.2.5 UV-Vis 分析 68 4.2.6 PL 分析 70 4.3 P3HT/CEO2奈米複合材料退火熱處理 73 4.3.1 XRD分析 73 4.3.2 Raman分析 75 4.3.3 XAS分析 78 4.3.4 PL分析 82 第五章 結論 84 第六章 參考文獻 86

[1] D.M. Chapin, C. Fuller, G.J.J.o.A.P. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, 25(5) (1954) 676-677.
[2] T. Montini, M. Melchionna, M. Monai, P.J.C.r. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, 116(10) (2016) 5987-6041.
[3] T.J.J.o.t.K.C.S. Norby, A Kröger-Vink compatible notation for defects in inherently defective sublattices, 47(1) (2010) 19-25.
[4] H.J.A.C.I.E.i.E. Weller, Colloidal semiconductor q‐particles: chemistry in the transition region between solid state and molecules, 32(1) (1993) 41-53.
[5] D. Celik, M. Krueger, C. Veit, H.F. Schleiermacher, B. Zimmermann, S. Allard, I. Dumsch, U. Scherf, F. Rauscher, P.J.S.E.M. Niyamakom, S. Cells, Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments, 98 (2012) 433-440.
[6] S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic, M. Bawendi, S.J.N.l. Gradecak, Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires, 11(9) (2011) 3998-4002.
[7] H.C. Chen, C.W. Lai, I.C. Wu, H.R. Pan, I.W.P. Chen, Y.K. Peng, C.L. Liu, C.h. Chen, P.T.J.A.M. Chou, Enhanced performance and air stability of 3.2% hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solar cell efficiency, 23(45) (2011) 5451-5455.
[8] A. Guchhait, A.K. Rath, A.J.J.S.e.m. Pal, s. cells, To make polymer: quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles, 95(2) (2011) 651-656.
[9] T. Krishnamoorthy, V. Thavasi, S.J.E. Ramakrishna, E. Science, A first report on the fabrication of vertically aligned anatase TiO 2 nanowires by electrospinning: preferred architecture for nanostructured solar cells, 4(8) (2011) 2807-2812.
[10] S.D. Oosterhout, M.M. Wienk, S.S. Van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, R.A.J.N.m. Janssen, The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells, 8(10) (2009) 818-824.
[11] E.J.A.F.M. Arici, N. s. Sarici ci and D. Meissner, 13 (2003) 165-171.
[12] M. Wright, A.J.S.e.m. Uddin, s. cells, Organic—inorganic hybrid solar cells: A comparative review, 107 (2012) 87-111.
[13] J.D.P. Ospina, S. Langner, T. Ameri, C.J.J.E.o.P.O.C. Brabec, Solubility and miscibility for diluted polymers and their extension to organic semiconductors, (2016) 1-38.
[14] C. Deibel, V. Dyakonov, C.J.J.I.J.o.S.T.i.Q.E. Brabec, Organic bulk-heterojunction solar cells, 16(6) (2010) 1517-1527.
[15] G. Dennler, M.C. Scharber, C.J.J.A.m. Brabec, Polymer‐fullerene bulk‐heterojunction solar cells, 21(13) (2009) 1323-1338.
[16] T. Ameri, P. Khoram, J. Min, C.J.J.A.M. Brabec, Organic ternary solar cells: a review, 25(31) (2013) 4245-4266.
[17] T. Ameri, N. Li, C.J.J.E. Brabec, E. Science, Highly efficient organic tandem solar cells: a follow up review, 6(8) (2013) 2390-2413.
[18] A.J. Haring, S.R. Ahrenholtz, A.J.J.A.a.m. Morris, interfaces, Rethinking Band Bending at the P3HT–TiO2 Interface, 6(6) (2014) 4394-4401.
[19] C. Deibel, V.J.R.o.P.i.P. Dyakonov, Polymer–fullerene bulk heterojunction solar cells, 73(9) (2010) 096401.
[20] W. Cai, X. Gong, Y.J.S.e.m. Cao, s. cells, Polymer solar cells: recent development and possible routes for improvement in the performance, 94(2) (2010) 114-127.
[21] G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R.J.O.E. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy, 9(5) (2008) 847-851.
[22] D. Wöhrle, D.J.A.M. Meissner, Organic solar cells, 3(3) (1991) 129-138.
[23] G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-Gonzalez, G. Cerullo, G.J.T.J.o.P.C.L. Lanzani, Transient absorption imaging of P3HT: PCBM photovoltaic blend: Evidence for interfacial charge transfer state, 2(9) (2011) 1099-1105.
[24] W.U. Huynh, J.J. Dittmer, A.P.J.s. Alivisatos, Hybrid nanorod-polymer solar cells, 295(5564) (2002) 2425-2427.
[25] M. Helgesen, R. Søndergaard, F.C.J.J.o.M.C. Krebs, Advanced materials and processes for polymer solar cell devices, 20(1) (2010) 36-60.
[26] Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, C.-W.J.J.o.t.A.C.S. Chen, Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells, 131(10) (2009) 3644-3649.
[27] S. Kumar, S.N. Sharma, J.J.J.o.n. Kumar, nanotechnology, Comparative charge transport study of MEHPPV–TiO2 and P3HT–TiO2 nanocomposites for hybrid bulk heterojunction solar cells, 19(6) (2019) 3408-3419.
[28] C.-J. Chiang, Y.-H. Lee, Y.-P. Lee, G.-T. Lin, M.-H. Yang, L. Wang, C.-C. Hsieh, C.-A.J.J.o.M.C.A. Dai, One-step in situ hydrothermal fabrication of D/A poly (3-hexylthiophene)/TiO 2 hybrid nanowires and its application in photovoltaic devices, 4(3) (2016) 908-919.
[29] H. Geng, C.M. Hill, S. Pan, L.J.P.C.C.P. Huang, Electrogenerated chemiluminescence and interfacial charge transfer dynamics of poly (3-hexylthiophene-2, 5-diyl)(P3HT)–TiO 2 nanoparticle thin film, 15(10) (2013) 3504-3509.
[30] Y. Huang-Zhong, L. Jin-Cheng, P.J.C.P.L. Jun-Biao, Photovoltaic cells with TiO2 nanocrystals and conjugated polymer composites, 25(8) (2008) 3013.
[31] G.L. Kabongo, P.S. Mbule, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, M.S.J.N.R.L. Dhlamini, Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho 3+-doped ZnO nanostructures, 11(1) (2016) 1-11.
[32] C.-H. Chang, T.-K. Huang, Y.-T. Lin, Y.-Y. Lin, C.-W. Chen, T.-H. Chu, W.-F.J.J.o.M.C. Su, Improved charge separation and transport efficiency in poly (3-hexylthiophene)–TiO 2 nanorod bulk heterojunction solar cells, 18(19) (2008) 2201-2207.
[33] Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A.J.P. Ostendorf, Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites, 6(7) (2014) 2037-2050.
[34] K. Pourzare, Y. Mansourpanah, S.J.B.R.J. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review, 3(4) (2016) 496-513.
[35] A. Saxman, R. Liepins, M.J.P.i.p.s. Aldissi, Polyacetylene: Its synthesis, doping and structure, 11(1-2) (1985) 57-89.
[36] 何明益, 林宏洲, 施體受體型窄能隙高分子的製備暨太陽能電池材料開發與熱電材料上之應用, 2009.
[37] A.K. Singh, R. Prakash, Conduction mechanism in electronic polymers: Effect of morphology, 2008 2nd National Workshop on Advanced Optoelectronic Materials and Devices, IEEE, 2008, pp. 65-74.
[38] A. Pron, P.J.P.i.p.s. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors, 27(1) (2002) 135-190.
[39] D. Trivedi, H.J.W. Nalwa, New York, Handbook of organic conductive molecules and polymers, 2 (1997) 505.
[40] L. Zhang, S. Chen, S. Yuan, D. Wang, P.-H. Hu, Z.-M.J.A.P.L. Dang, Low dielectric loss and weak frequency dependence of dielectric permittivity of the CeO2/polystyrene nanocomposite films, 105(5) (2014) 052905.
[41] T.A. Skotheim, J. Reynolds, R.J.N.y. Elsenbamer, Handbook of Conducting Polymers Marcel Dekker, (1998).
[42] J.M. de Souza, E.C.J.S.m. Pereira, Luminescence of poly (3-thiopheneacetic acid) in alcohols and aqueous solutions of poly (vinyl alcohol), 118(1-3) (2001) 167-170.
[43] A.M. López, A. Mateo-Alonso, M. Prato, Fullerenes for Materials Science, Fullerenes2011, pp. 389-413.
[44] M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, W.J.J.o.V.S. Hu, N. Technology B, P. Microelectronics: Materials, Measurement,, Phenomena, Hole mobility enhancement by chain alignment in nanoimprinted poly (3-hexylthiophene) nanogratings for organic electronics, 28(6) (2010) C6M63-C6M67.
[45] A.M. Ballantyne, L. Chen, J. Dane, T. Hammant, F.M. Braun, M. Heeney, W. Duffy, I. McCulloch, D.D. Bradley, J.J.A.F.M. Nelson, The effect of poly (3‐hexylthiophene) molecular weight on charge transport and the performance of polymer: fullerene solar cells, 18(16) (2008) 2373-2380.
[46] E. Bundgaard, F.C.J.S.E.M. Krebs, S. Cells, Low band gap polymers for organic photovoltaics, 91(11) (2007) 954-985.
[47] T.A. Skotheim, Handbook of conducting polymers, CRC press1997.
[48] J. Barker, R. Warburton, E.J.P.R.B. O’Reilly, Electron and hole wave functions in self-assembled quantum rings, 69(3) (2004) 035327.
[49] A. Younis, D. Chu, S.J.F.n. Li, Cerium oxide nanostructures and their applications, (2016) 53-68.
[50] Y.M. Chiang, E. Lavik, I. Kosacki, H. Tuller, J.J.A.P.L. Ying, Defect and transport properties of nanocrystalline CeO2− x, 69(2) (1996) 185-187.
[51] Y. Liu, Z. Lockman, A. Aziz, J.J.J.o.P.C.M. MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, 20(16) (2008) 165201.
[52] X.-D. Zhou, W. Huebner, H.U.J.A.P.L. Anderson, Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO 2, 80(20) (2002) 3814-3816.
[53] J.G. Li, T. Ikegami, Y. Wang, T.J.J.o.t.A.C.S. Mori, Reactive ceria nanopowders via carbonate precipitation, 85(9) (2002) 2376-2378.
[54] P.L. Chen, I.W.J.J.o.t.A.C.S. Chen, Reactive cerium (IV) oxide powders by the homogeneous precipitation method, 76(6) (1993) 1577-1583.
[55] S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, T.J.N.m. Fukuda, Structural study on monosize CeO2-x nano-particles, 11(1) (1999) 141-147.
[56] J. Fierro, S. Mendioroz, A.J.J.o.c. Olivan, i. science, Surface chemistry of cerium oxide prepared by an isobaric thermal procedure, 107(1) (1985) 60-69.
[57] 鄭信民, 工. 林麗娟 %J 工業材料雜誌, X 光繞射應用簡介, (2002).
[58] G.F. Nataf, New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy, Paris Saclay, 2016.
[59] 熊.J. 科儀新知, 台灣光子源 (TPS) 真空系統建造與技術, (210) (2017) 5-15.
[60] W.-C. Yen, Y.-H. Lee, J.-F. Lin, C.-A. Dai, U.-S. Jeng, W.-F.J.L. Su, Effect of TiO2 nanoparticles on self-assembly behaviors and optical and photovoltaic properties of the P3HT-b-P2VP block copolymer, 27(1) (2011) 109-115.
[61] P. Veerender, V. Saxena, A. Chauhan, S. Koiry, P. Jha, A. Gusain, S. Choudhury, D. Aswal, S.J.S.e.m. Gupta, s. cells, Probing the annealing induced molecular ordering in bulk heterojunction polymer solar cells using in-situ Raman spectroscopy, 120 (2014) 526-535.
[62] W.C. Tsoi, D.T. James, J.S. Kim, P.G. Nicholson, C.E. Murphy, D.D. Bradley, J. Nelson, J.-S.J.J.o.t.A.C.S. Kim, The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT: PCBM blend thin films, 133(25) (2011) 9834-9843.
[63] 蕭建國, “鑭鍺鎵玻璃系統之偏極化拉曼散射”, 私立輔仁大學物理研究所碩士論文(1999).

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2050/08/26 (校外網路)
全文公開日期 2050/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE