簡易檢索 / 詳目顯示

研究生: 李佳真
Jia-Zhen Li
論文名稱: 金屬氧化物觸媒於臭氧降解反應之研究
Study on degradation of ozone over metal oxide
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Yang Gu
謝育民
Yu-min Xie
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 臭氧降解反應動力學實場測試金屬氧化物
外文關鍵詞: ozone decomposition, reaction kinetics,, filed test, metal oxides
相關次數: 點閱:227下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討A改質金屬氧化物B於常溫常壓下降解臭氧之反應,分別討論A改質金屬觸媒之最佳條件,及降解程序的機制,並以實場條件下進行長時間測試。
實驗中利用含浸法製備A改質B,分別討論金屬摻入量與鍛燒溫度對催化活性與結構的影響,並以X光繞射儀(XRD)、傅立葉紅外線光譜儀(FTIR)、表面積及孔徑分析儀(BET)、能量散射光譜儀(EDS)、場發射掃描式電子顯微鏡(SEM)分析其物理化學特性。結果顯示加入過量金屬進行改質時,會造成表面A金屬堆積,導致分散性下降;而A/B觸媒在最佳條件鍛燒溫度,形成具高比表面積A/B氧化物,有最佳的降解效能。
實驗中利用FT-IR、TGA、EA、XRD等設備,分析A/B觸媒降解程序後之表面中間產物,及利用IC分析降解程序中之氣相端中間產物;由觸媒表面及氣相端之中間產物分析,發現有氮氧化物生成,推測為臭氧產生機生成之副產物所致,造成觸媒失活;進一步以滯留時間、相對溼度、溫度、初始濃度、觸媒量等參數進行A/B觸媒系統降解臭氧之動力學探討,使用Langmuir-Hinshelwood model與Power Law兩種模式,以驗算出其吸脫附常數及速率常數,成功地推導出動力學機制。
最後為進一步證實A/B觸媒能在實場上應用,進行壓錠程序以減少反應器壓降及粉塵問題,並於臭氧濃度約350ppm,GHSV=7375h-1,濕度60~85%下進行長時間測試,能在連續操作200小時下達到轉化率90%以上的降解效能,顯示其已達實用化標準。


In this work, the degradation of gaseous ozone over metal oxide catalyst under ambient condition in a continuous flow reactor was investigated.
In first part, the effects of calcination and amount of A-ion on physical properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface area and porosimstry analyzer (BET), energy dispersive spectrometer (EDS), and scanning electron microscope (SEM), respectively. The excessive amount of A will create the multilayer or bulk A on the surface, resulting in the decrease in active site.
The intermediates on catalyst surface and in gas were respectively determined by FTIR, TGA, EA, XRD, and IC. The results showed the presence of nitrogen oxides both on the catalyst surface and in gas phase, the reactivity of catalyst was gradually decreased due to the adsorption of NOx. Moreover, the reaction parameters, such as retention time, relative humidity, temperature, amount of catalyst, and ozone concentration were studied for conduction of reaction kinetics. Langmuir-Hinshelwood and Power law models were successfully applied to estimate the adsorption and rate constants.
Finally, in order to further confirm the practicability of this A/B catalyst, the A/B pellet was fabricated to lower pressure drop and avoid dust emission. In the 200h long-term test, the conversion was kept at over 90% for simulated field conditions, 350 ppm of ozone, GHSV=7375h-1, and relative humidity of 60~ 85%. The results indicated the activity of prepared catalyst have matched the practical standards.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 1-1晶圓清洗製程簡介 1 1-1-1濕式清潔法 1 1-1-2乾式清潔法 2 1-1-3臭氧水清潔法 2 1-2臭氧簡介 4 1-2-1臭氧生成方式 5 1-2-2臭氧檢測方式 7 1-2-3臭氧氣體之危害 8 1-2-4臭氧氣體之相關法規 9 1-3研究動機 10 第二章 文獻回顧 11 2.1 臭氧降解方法 11 2.2 金屬氧化物應用於臭氧分解 13 2.3溫度對臭氧降解的影響 23 2.4水氣對臭氧降解的影響 26 2.5觸媒毒化 28 第三章 研究方法 32 3.1實驗規劃 32 3.2 實驗藥品 33 3.3儀器設備 33 第四章 結果與討論 36 4.1 降解臭氧 36 4.2金屬改質效應 37 4.2.1金屬觸媒降解臭氧 37 4.2.2金屬改質後官能基分析 38 4.2.3含浸法與直接混摻法 38 4.3中間產物分析 40 4.3.1 表面官能基分析 40 4.3.2 表面元素分析 41 4.3.3 EA元素分析 41 4.3.4 熱重分析 42 4.3.5 氣相離子分析 44 4.4 VUV臭氧產生機 45 4.4.1臭氧降解效能比較 45 4.4.2 表面官能基分析 46 4.4.3 氣相離子分析 46 4.5 A/B系統反應動力學之探討 48 4.5.1滯留時間影響 48 4.5.2濕度影響 49 4.5.3溫度影響 53 4.5.4觸媒量影響 55 4.5.5起始濃度影響 56 4.6反應動力學探討 58 4.6.1 Langmuir-Hinshelwood model-PFR 58 4.6.2 Power Law-PFR 65 4.7長時間測試 67 第五章 結論與未來展望 72 5.1 A/B觸媒最佳操作條件 72 5.2中間產物及其反應機制 72 5.3 A/B反應動力學之探討 72 5.4 A/B之長時間操作測試 73 5.5未來展望 74 文獻回顧 75 附錄 80

[1] 簡弘民,盧信忠,黃尊祐,蔡春進,半導體晶圓表面清洗技術發展,台加工程顧問股份有限公司
[2] T. Saito, K. Sasaki, T. Ozawa, S. Yoda, The Use of Ozone in Advanced Chip Manufacturing, Vakuum in Forschung und Praxis, 14 (2002) 174-179.
[3] T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky, Ozone decomposition, Interdisciplinary toxicology, 7 (2014) 47-59.
[4] 臭氧簡介、檢測方法,行政院環保署
[5] 伍文召,姜成春,李孟,「水中臭氧濃度測定方法的比較」,中國科技論文,2009
[6] 行政院環保署,空氣品質監測網,空氣汙染指標
[7] J. Jia, P. Zhang, L. Chen, Catalyt ic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Applied Catalysis B: Environmental, 189 (2016) 210-218.
[8] 張浩,范海明,徐海云,陳兆文,宋春麗,一種臭氧分解催化劑及其製備方法(2008),中國船舶重工集團公司第七一八研究所.
[9] 杜峰,常溫除臭氧催化材料(2014),江蘇瑞丰科技實業有限公司.
[10] B. Dhandapani, S.T. Oyama, Gas phase ozone decomposition catalysts, Applied Catalysis B: Environmental, 11 (1997) 129-166.
[11] A. Naydenov, P. Konova, P. Nikolov, F. Klingstedt, N. Kumar, D. Kovacheva, P. Stefanov, R. Stoyanova, D. Mehandjiev, Decomposition of ozone on Ag/SiO 2 catalyst for abatement of waste gases emissions, Catalysis Today, 137 (2008) 471-474.
[12] W. Li, G. Gibbs, S.T. Oyama, Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations, Journal of the American Chemical Society, 120 (1998) 9041-9046.
[13] H. Einaga, S. Futamura, Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone, Reaction Kinetics and Catalysis Letters, 81 (2004) 121-128.
[14] C. Dan, E.-J. Popovici, F. Imre, E. Indrea, P. Marginean, I. Silaghi-Dumitrescui, Studies on some ozone decomposition catalysts based on nickel oxide, Studia Universitatis Babes-Bolyai, Chemia, LII, 1 (2007) 92-96.
[15] I. Stambolova, V. Georgiev, T. Batakliev, L. Lutzkanov, V. Blaskov, G. Atanasova, S. Vassilev, A. Eliyas, Synthesis And Characterization Of Niclel-And Silver-Loaded Activated Carbon Catalysts For Ozone Decomposition, Journal of Chemical Technology and Metallurgy, 51 (2016) 181-187.
[16] J. Wu, Y. Huang, Q. Xia, Z. Li, Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts, Plasma Chemistry and Plasma Processing, 33 (2013) 1073-1082.
[17] M. Wang, P. Zhang, J. Li, C. Jiang, The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon, Chinese Journal of Catalysis, 35 (2014) 335-341.
[18] Z. Lian, J. Ma, H. He, Decomposition of high-level ozone under high humidity over Mn–Fe catalyst: The influence of iron precursors, Catalysis Communications, 59 (2015) 156-160.
[19] H. Chen, C.O. Stanier, M.A. Young, V.H. Grassian, A kinetic study of ozone decomposition on illuminated oxide surfaces, The Journal of Physical Chemistry A, 115 (2011) 11979-11987.
[20] D. Mehandjiev, A. Naydenov, G. Ivanov, Ozone decomposition, benzene and CO oxidation over NiMnO 3-ilmenite and NiMn 2 O 4-spinel catalysts, Applied Catalysis A: General, 206 (2001) 13-18.
[21] M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, D. Mehandjiev, Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs, Chemical Engineering Journal, 122 (2006) 41-46.
[22] H. Einaga, M. Harada, S. Futamura, Structural changes in alumina-supported manganese oxides during ozone decomposition, Chemical physics letters, 408 (2005) 377-380.
[23] D. Mehandjiev, A. Naidenov, Ozone Decomposition on α-Fe2O3Catalyst, Ozone: Science & Engineering, 14 (1992) 277-282.
[24] S. Imamura, M. Ikebata, T. Ito, T. Ogita, Decomposition of ozone on a silver catalyst, Industrial & engineering chemistry research, 30 (1991) 217-221.
[25] A. Bielanski, J. Haber, Oxygen in catalysis, CRC Press1990.
[26] 翁詩甫、徐怡庄,傅立葉變換紅外光譜分析,化學工業出版社,2016.
[27] Y. Guo, X. Liao, M. Fu, H. Huang, D. Ye, Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process, Journal of Environmental Sciences, 28 (2015) 187-194.
[28] J.T. Herron, Evaluated chemical kinetics data for reactions of N (2 D), N (2 P), and N 2 (A 3 Σ u+) in the gas phase, Journal of Physical and Chemical Reference Data, 28
(1999) 1453-1483.
[29] J.-O. Chae, Non-thermal plasma for diesel exhaust treatment, Journal of electrostatics, 57 (2003) 251-262.
[30] A. Chmielewski, Y. Sun, Z. Zimek, S. Bułka, J. Licki, Mechanism of NO x removal by electron beam process in the presence of scavengers, Radiation Physics and chemistry, 65 (2002) 397-403.
[31] W. Li, S.T. Oyama, Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies, Journal of the American Chemical Society, 120 (1998) 9047-9052.
[32] T.T. Batakliev, V.F. Georgiev, M.P. Anachkov, S.K. Rakovsky, G.E. Zaikov, Ozone decomposition on the surface of metal oxide catalyst, Вестник Волгоградского государственного университета. Серия 10: Инновационная деятельность, (2014).
[33] S.T. Oyama, Chemical and catalytic properties of ozone, Catalysis Reviews, 42 (2000) 279-322.
[34] A. Naydenov, R. Stoyanova, D. Mehandjiev, Ozone decomposition and CO oxidation on CeO2, Journal of Molecular Catalysis A: Chemical, 98 (1995) 9-14.
[35] K. Bulanin, J. Lavalley, A. Tsyganenko, Infrared study of ozone adsorption on TiO2 (anatase), The Journal of Physical Chemistry, 99 (1995) 10294-10298.
[36] R. Radhakrishnan, S.T. Oyama, J.G. Chen, K. Asakura, Electron transfer effects in ozone decomposition on supported manganese oxide, The Journal of Physical Chemistry B, 105 (2001) 4245-4253.
[37] 印紅玲、謝家理、楊慶良、尹臣、王艷、馮易君,臭氧在金屬氧化物上的分解機理,四川大學化學學院,四川成都,2003.
[38] B. Hall, P. Schager, O. Lindqvist, Chemical reactions of mercury in combustion flue gases, Water, Air, & Soil Pollution, 56 (1991) 3-14.
[39] R. Pandiselvam, V. Thirupathi, S. Anandakumar, Reaction Kinetics of Ozone Gas in Paddy Grains, Journal of Food Process Engineering, 38 (2015) 594-600.
[40] P. Ravi, T. Venkatachalam, M. Rajamani, Decay Rate Kinetics of Ozone Gas in Rice Grains, Ozone: Science & Engineering, 37 (2015) 450-455.
[41] R. Pandiselvam, V. Thirupathi, Reaction kinetics of Ozone gas in Green gram (Vigna radiate), Ozone: Science & Engineering, 37 (2015) 309-315.

無法下載圖示 全文公開日期 2022/07/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE