簡易檢索 / 詳目顯示

研究生: 江志明
Chih-Ming Chiang
論文名稱: 固態氧化物燃料電池以高導電離子導體改良之新型陽極
Solid Oxide Fuel Cell Anode Development Using Ionic Materials with High Conductivity
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 王朝正
Chaur-Jeng Wang
余宣賦
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 燃料電池陽極氧化鋯極化催化
外文關鍵詞: SOFC, anode, zirconia, polarization, catalysis
相關次數: 點閱:392下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用40wt%高離子導共摻雜系統材料(Zr0.92Y0.155M0.005O2.0775,M= Mg,Ca,Sr)與60wt%催化金屬鎳開發出改良陽極,並與常用陽極(Ni-YSZ)做比較。陽極膠體網印於商用釔安定氧化鋯(HWA 8YSZ)之電解質基材,並燒結1350oC持溫40分鐘,陰極(Pt-YSZ)部分則以白金與釔安定氧化鋯複合物為主,最後經過800oC下還原兩個小時形成導電陽極,完成SOFC之半電池結構(Half Cell)。利用XRD與SEM分析結晶性和微結構,而交流阻抗分析對陽極導電性質與催化活性進行研究,最後測量半電池之功率密度(power density)。
從交流阻抗圖中的極化電阻結果指出,Ni-MgYSZ在800oC下擁有最低的極化電阻(1.577 ohm-cm2),較其他陽極能夠降低界面之極化損失。整體最低的極化電阻為Ni-MgYSZ,其次分別Ni-CaYSZ < Ni-SrYSZ < Ni-YSZ,此結果解釋以高離子導之共摻雜系統製作改良陽極,確實有降低電極在電解質與燃料間的極化損失。
在相同氣氛(5%H2-95%N2)中分析鐵弗曲線,改良電極Ni-MgYSZ之交換電流密度(0.0344 A/cm2,logi0)值無論是高溫或是低溫範圍皆明顯較其他電極要高。在高溫範圍(700-800oC),logi0值是Ni-CaYSZ的較Ni-SrYSZ大,最小的是Ni-YSZ,由此可知相同條件下以高離子導之共摻雜系統設計的改良陽極除了降低極化阻抗,更提升了電極對燃料氣氛下的催化能力。而有趣的是,發現交換電流密度(logi0)與極化電阻(Rp)具有相依性,也就是較低的極化損失讓帶電粒子(O2-與e-)在陽極與界面(陽極與電解質)容易傳遞,使得三相點催化能力提升,並釋放出更多電子,以改良陽極設計的概念說明之,共摻雜系統之添加有助於三相點之電化學反應。
改良電極之循環伏安曲線皆呈現遲滯曲線(hysteresis loop),表示其因為本身極為優秀的離子導電性和觸媒活性,降低氫催化反應(H2-->2H++2e-)與氧離子氧化反應(O2--->O2+2e-)的極化阻抗,使得其正掃時斜率變大,比常用陽極Ni-YSZ特性優秀。因此可見改良電極不但具有較大的遲滯曲線,亦能提升燃料電池之發電效能。
從交流阻抗分析與催化性分析(鐵弗曲線與循環伏安法)的結果指出,本次實驗設計的高離子導共摻雜系統製作之改良陽極比較常用陽極(Ni-YSZ)可降低極化損失,又能提升三相點的催化活性,勢必能提升單電池的發電效益。本實驗半電池在800oC發出最高的功率密度(Power density)的陽極為所預期最佳電性之Ni-MgYSZ (34.54mW/cm2),為常用的1.23倍,其次分別Ni-CaYSZ >Ni-SrYSZ > Ni-YSZ,此結果印證了實驗設計與分析結果。


Catalytic properties of newly modified anodes, mixture of 40 wt% high ionic conductivity co-doping zirconia materials (Zr0.92Y0.155MxO2.0775, M= Mg, Ca, Sr) and 60wt% catalytic particle Ni was analyzed from the information of Tafel, current-overpotential and cyclic voltammetry curves and power density of half cell employing novel anodes were investigated in this work. Experimental results show that the polarization resistance of Ni-YSZ was reduced from 2.32 Ω-cm2 to 1.577 Ω-cm2 by substituting 8mol% yttria doped zirconia (YSZ) to Zr0.92Y0.155Mg0.005O2.0775 (MgYSZ) at 800oC, because of increasing the amount of triple phase boundary (TPB) and decreasing of activation energy of oxygen ion migration in YSZ was observed by modifying appropriate elements to YSZ. It is good for enhancing the velocity of oxygen ion migration in YSZ crystal and that of electrochemical reactions, containing oxygen ion oxidation and combination of oxygen and hydrogen cation to be water in modified anode. The catalytic activity of modified anode correlated with the value of exchange current density (logi0) identified from Tafel plots under 5% H2 condition. The exchange current densities of modified anodes are higher than that of Ni-YSZ at 800oC. Comparing the best catalytic activities of modified anodes, the result exhibits Ni-MgYSZ> Ni-CaYSZ> Ni-SrYSZ> Ni-YSZ and therefore the catalytic activity of anode depends on the ionic conductivity of co-doping zirconia in modified anode Besides, it is found that there are some correlations between logi0 and Rp, increasing of exchange current density and decreasing of polarization loss were observed due to mass transfer of oxygen ion and charge transfer easy in modified anodes. The electrochemical reactions of anodes were determined by using cyclic voltammetry method, the area of occurring hysteretic loop increases with an increase of activity of anode, it is attributed to that the formation of oxygen ionic oxidation (O2-O2+2e-) easy.
Finally, the highest power density of the half cell Ni-MgYSZ/YSZ/Pt reference cathode (34.54 mW/cm2) is 23% higher than that of Ni-YSZ/YSZ/Pt reference cathode (28.02 mW/cm2) at 800oC, and the tendency of power density of modified anode is similar to that of activity variation of anode, resulting that the performance of fuel cell could be enhanced by employing modified anodes with high ionic conductivity of zirconia materials in Ni-YSZ.

中文摘要……………………………………………………………………………………………I 英文摘要…………………………………………………………………………………………III 致謝…………………………………………………………………………………………………V 目錄………………………………………………………………………………………………VII 圖索引………………………………………………………………………………………………X 表索引………………………………………………………………………………………….XVII 第一章 序論………………………………………………………………………………………1 第二章 文獻回顧…………………………………………………………………………………8 2-1. 固態氧化物燃料電池回顧………………………………………………………………8 2-1-1. 固態氧化物燃料電池簡介…………………………………………………….8 2-1-2. 固態氧化物燃料電池之歷史…………………………………………………10 2-1-3. 固態氧化物燃料電池基本原理………………………………………………13 2-2. 固態氧化物燃料電池之電解質……………………………………………………….15 2-2-1. 電解質基本傳導原理…………………………………………………………15 2-2-2. 氧化鋯電解質結構和導電性能………………………………………………17 2-3. 固態氧化物燃料電池之陽極………………………………………………………….27 2-3-1. 陽極簡介………………………………………………………………………27 2-3-2. 陽極基本特性…………………………………………………………………27 2-3-3. 陽極操作原理…………………………………………………………………39 2-3-4. 電極/電解質介面電化學…………………………………………………….40 2-3-5. 電極之極化現象………………………………………………………………40 2-3-6. 活化極化機制…………………………………………………………………43 2-3-7. 濃度極化機制…………………………………………………………………45 第三章 實驗方法……………………………………………………………………………….47 3-1. 實驗藥品規格及儀器總表…………………………………………………………….47 3-2. 實驗流程……………………………………………………………………………….49 3-3. 試片製備……………………………………………………………………………….51 3-3-1. 粉末製備………………………………………………………………………51 3-3-2. 電解質成型……………………………………………………………………52 3-3-3. 電解質燒結……………………………………………………………………52 3-3-4. 電解質研磨………………………………………………………53 3-3-5. 陽極膠體製作……………………………………………………53 3-3-6. 膠體網印…………………………………………………………55 3-3-7. 陰極膠體網.…………………………………………………….55 3-3-8. 陽極試片還原印…………………………………………………55 3-4. 試片量測與分析……………………………………………………………………….56 3-4-1. 粉末粒徑之分析……………………………………………………………..56 3-4-2. X-ray繞射分析……………………………………………………………….56 3-4-3. 密度之量測……………………………………………………………………57 3-4-4. SEM表面影像分析…………………………………………………………….58 3-4-5. EDS元素分析…………………………………………………………….……58 3-4-6. 電極孔隙率分析………………………………………………………………58 3-4-7. 極化電阻(Polarization resistance)之測量…………………………….59 3-4-8. 鐵弗曲線(Tafel plot)之測量………………………………………………62 3-4-9. 循環伏安法(Cyclic Voltammetry)之測量…………………………………65 3-4-10. 半電池發電效益(Power density)之測量…………………………………66 第四章 結果與討論…………………………………………………………………………….68 4-1. 共摻雜改良陽極之設計概念………………………………………………………….68 4-2. Ni-YSZ與共摻雜改良陽極之晶體結構……………………………………………….69 4-3. Ni-YSZ與共摻雜改良陽極之微觀結構……………………………………………….72 4-4. 交流阻抗分析改良陽極之極化電阻………………………………………………….79 4-5. 鐵弗曲線、極化曲線與循環伏安法分析電極活性………………………………….87 4-6. 發電效應(Power density)……………………………………………………………95 第五章 結論………………………………………………………………………………………99 參考文獻…………………………………………………………………………………………102 圖索引 圖2-1-1 燃料電池的歷…………………………………………………………………………12 圖2-1-2 固態燃料電池的原理發現者及發明者。……………………………………………12 圖2-1-3 燃料電池的基礎架構。………………………………………………………………13 圖2-1-4 SOFC運作流程。………………………………………………………………………14 圖2-2-1 氧化鋯摻雜三價陽離子形成氧空缺示意圖。………………………………………15 圖2-2-2 氧化鋯添加不同的相穩定劑與濃度變化在1080K下導電度 的變化。………………………………………………………………………………………….19 圖2-2-3 不同Y2O3添加量氧化鋯的Arrhenius圖。………………………………………….20 圖2-2-4 不同Y2O3添加量氧化鋯在溫度1,000 oC、不同氧分壓下導 電度之變化。…………………………………………………………………………………….21 圖2-2-5 固態氧化物電池電解質釔安定氧化鋯與釤(Sm)安定氧化鈰在氧分壓變化在空氣與燃料(還原氣氛)之間,導電性變化的情形。………………………………………………….21 圖2-2-6 不同濃度之二價元素共摻雜電解質在不同溫度下的離子導電性 (a) (ZrO2)0.92-(Y2O3) 1-X -(MgO)X,(b) (ZrO2)0.92-(Y2O3) 1-X -(CaO)X,(c) (ZrO2)0.92-(Y2O3)1-X-(SrO)X,where in x=0, 0.005, 0.01, 0.015, 0.02。…………………………………………………………………………………………….24 圖2-2-7 氧化鎳(NiO)與氧化釔(Y2O3)在不同氧化釔成分下的相 圖。……………………………………………………………………………………………….25 圖2-2-8 氧化鎳(NiO)與氧化鎂(MgO)在不同氧化鎳成分下的相 圖。……………………………………………………………………………………………….25 圖2-2-9 氧化鎳(NiO)與氧化鈣(CaO)在不同氧化鎳成分下的相 圖。……………………………………………………………………………………………….26 圖2-3-1 在10% H2與N2混合氣體於不同溫度下Ni-SZY、Ni-CZY、Ni-SCZY與Pt電極以anode/electrolyte/anode結構測量之電阻率。………………………………………………29 圖2-3-2 催化材料之活性與金屬原子之電子結構間的關係。……………………………………………………………………………………………….32 圖2-3-3 燃料電池特性於I–V極化曲線與I–P功率密度於陽極 (a)CuO-NiO-YSZ,0.7:0.3:1 (b) CuO-NiO-YSZ,0.3:0.7:1。……………………………………………………33 圖2-3-4 Pd-Ni複合陽極在甲烷(CH4, 100mL/min)氣氛中反應生成物的電流效率隨時間變化曲線於0.5V,1073K下,陽極:Pd-Ni/(LSCr + SDC)/SDC/LSC。…………………………34 圖2-3-5 8YSZ在空氣下與YZT在空氣和Ar/4% H2之整體電性的阿瑞尼斯圖(Arrhenius plot) 。………………………………………………………………………………………….36 圖2-3-6 說明多層陽極之成分(Ni content)與孔隙結構上的漸進層,隨著結構不同擁有不同的孔隙率(porosity)與熱膨脹係數(CTE) 。……………………………………………….37 圖2-3-7 比較熱循環(950oC;H2/air)前後極化曲線(I/V curve)之特 性。……………………………………………………………………………………………….38 圖2-3-8 共燒電池在固定電流下,測量Long-term情況。………………………………….38 圖2-3-9 固態氧化物燃料電池之陽極在氫氣燃料下反應示意 圖。……………………………………………………………………………………………….40 圖2-3-10 氫氣(PH2 )與水蒸氣(PH2O)經過陽極和氧氣(PO2)過陰極其分壓之變化(a) 陽極支撐(anode-supported cell) 與 (b) 陰極支撐(cathode-supported cell) 。………………………………………………………………………………………….46 圖3-1 本研究製作改良陽極的手法與量測之流程圖。………………………………………50 圖3-2 小顆粒Ni分佈在大顆粒YSZ上的陽極結構上氫氣被催化的情形。……………………………………………………………………………………………….52 圖3-3 主要之半電池結構,陽極材料為(NiO-8YSZ;NiO-Zr0.92Y0.155M0.005O2.0775,M = Mg,Ca,Sr) 。……………………………………………………………………………….54 圖3-4 陽極膠體製作與網印之流程圖。………………………………………………………54 圖3-5 SEM圖面調整對比與亮度後,點選突顯的孔洞作孔隙率計 算。……………………………………………………………………………………………….59 圖3-6 三極式測量電極之交流阻抗圖譜。……………………………………………………62 圖3-7 以coreware軟體比對鐵弗曲線之陽極交換電流值。…………………………………64 圖3-8 以coreware軟體比對極化曲線之斜率。………………………………………………65 圖3-9 陽極經過五次循環後的循環伏安曲線。………………………………………………66 圖3-10 單電池之極化曲線與發電功率圖。………………………………………………….67 圖4-1 60wt%NiO-40wt% (a)YSZ, (b)MgYSZ, (c) CaYSZ與(d) SrYSZ 燒結1350oC持溫40分鐘之XRD圖。………………………………………………………………………………………71 圖4-2 60wt%Ni-40wt% (a)YSZ, (b)MgYSZ, (c) CaYSZ與(d) SrYSZ 在80%Ar/20%H2還原氣氛下,進行800oC熱處理兩個小時之XRD。…………………………………………………….71 圖4-3 (a) 為Ni晶粒之SEM、EDS分析;(b) 為Ni晶粒/YSZ晶粒邊緣之SEM、EDS分析;(c) 為YSZ晶粒之SEM、EDS分析。……………………………………………………………………74 圖4-4 NiO-YSZ與改良電極NiO-共摻雜系統之SEM影像:燒結後 (a)(b) NiO-YSZ,(c)(d) NiO-MgYSZ,(e)(f) NiO-CaYSZ,(g)(h) NiO-SrYSZ;還原後 (i)(j) Ni-YSZ,(k)(l) Ni-MgYSZ,(m)(n) Ni-CaYSZ,(o)(p) Ni-SrYSZ。………………………………………………76 圖4-5 NiO-YSZ與改良電極NiO-共摻雜系統橫斷面(Cross section)之SEM影像:燒結後 (a)(b) NiO-YSZ,(c)(d) NiO-MgYSZ,(e)(f) NiO-CaYSZ,(g)(h) NiO-SrYSZ;還原後 (i)(j) Ni-YSZ,(k)(l) Ni-MgYSZ,(m)(n) Ni-CaYSZ,(o)(p) Ni-SrYSZ。…………….78 圖4-6(a) Ni-YSZ在不同溫度範圍下(500~800oC)之交流阻抗圖 譜。……………………………………………………………………………………………….81 圖4-6(b) Ni-MgYSZ在不同溫度範圍下(500~800oC)之交流阻抗圖 譜。……………………………………………………………………………………………….82 圖4-6(c) Ni-CaYSZ在不同溫度範圍下(500~800oC)之交流阻抗圖 譜。……………………………………………………………………………………………….83 圖4-6(d) Ni-SrYSZ在不同溫度範圍下(500~800oC)之交流阻抗圖 譜。……………………………………………………………………………………………….83 圖4-7 交流阻抗分析儀量測得到共摻雜新電極與常用陽極的整體極化電阻於(a)低溫(500-650oC)與(b)高溫(700-800oC)之阿瑞尼氏圖(Arrhenius plot)。………………………….84 圖4-8 交流阻抗分析儀量測得到共摻雜新電極與常用陽極的高頻半圓之極化電阻於(a)低溫(500-650oC)與(b)高溫(700-800oC)之阿瑞尼氏圖(Arrhenius plot)。……………………………………………………………………………………………85 圖4-9 交流阻抗分析儀量測得到共摻雜新電極與常用陽極的中、低頻半圓之極化電阻於(a)低溫(500-650oC)與(b)高溫(700-800oC)之阿瑞尼氏圖(Arrhenius plot)。……………………………………………………………………………………………85 圖4-10 (a)常用陽極Ni-YSZ、(b) 改良Ni-MgYSZ、(c) 改良Ni-CaYSZ與 (d) 改良Ni-SrYSZ 500-800oC (電解質厚度:0.7mm)之鐵弗曲線圖。(上曲線:陽極;下曲線:陰極)…………………………………………………………………………………………………….89 圖4-11 常用電極Ni-YSZ與改良陽極(電解質厚度:0.7mm)之logi 值曲線圖。……………………………………………………………………………………….90 圖4-12 (a)常用陽極Ni-YSZ、(b)改良陽極Ni-MgYSZ、(c)改良陽極Ni-CaYSZ與(d)改良陽極Ni-SrYSZ在不同溫度下的極化曲線。……………………………………………………….91 圖4-13 常用陽極與改良陽極之極化曲線在不同溫度的斜率。…………………………….92 圖4-14 陽極的氧化還原反應影響循環伏安曲線在正掃與反掃之變 化。……………………………………………………………………………………………….94 圖4-15 (a)常用陽極Ni-YSZ、(b)改良陽極Ni-MgYSZ、(c)改良陽極Ni-CaYSZ與(d)改良陽極Ni-SrYSZ在不同溫度下的循環伏安曲線。………………………………………………….95 圖4-16(a) 常用陽極Ni-YSZ之發電效應在700-800oC,電解質厚度0.6mm燃料氣氛5%H2(Dry,100cc/min)。…………………………………………………………………………….96 圖4-16(b) 改良陽極Ni-MgYSZ之發電效應在700-800oC,電解質厚度0.6mm燃料氣氛5%H2(Dry,100cc/min)。…………………………………………………………………………….97 圖4-16(c) 改良陽極Ni-CaYSZ之發電效應在700-800oC,電解質厚度0.6mm燃料氣氛5%H2(Dry,100cc/min)。…………………………………………………………………………….97 圖4-16(d) 改良陽極Ni-SrYSZ之發電效應在700-800oC,電解質厚度0.6mm燃料氣氛5%H2(Dry,100cc/min)。…………………………………………………………………………….98 表索引 表2-2-1 目前電解質常用之材料及其800 oC之離子導電率。………………………………16 表2-3-1 各電極金屬對氫電極反應的log io(A•cm-2)平均值(H2SO4或 HClO4水溶液) 。…………………………………………………………………………………31 表2-3-2 不同Ni成分添加到YSZ與YZT的熱膨脹係數(TEC)表格,溫度範圍在25oC與1000oC間。……………………………………………………………………………………………….36 表3-1 各氧化物原料之詳細資料。……………………………………………………………47 表3-2 實驗儀器之詳細資料。…………………………………………………………………48 表4-1 常用陽極與改良陽在燒結球磨後的粒徑與還原前後的孔隙率。……………………………………………………………………………………………….79 表4-2(a) 常用與改良陽極極化阻抗於低溫(500-650oC)之高頻、低頻與整體極化阻抗活化能分佈。………………………………………………………………………………………….87 表4-2(b) 常用與改良陽極極化阻抗於高溫(700-800oC)之高頻、低頻與整體極化阻抗活化能分佈。………………………………………………………………………………………….87

參考文獻
1. T. Setoguchi, M. Sawano, K. Eguchi, and H. Arai, “Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC,” Solid State Ionics, 40-41, 502 (1990).
2. J. Schoonman, J. P. Dekker, J. W. Broers, and N. J. Kiwiet, “Electrochemical vapor deposition of stabilized zirconia and interconnection materials for solid oxide fuel cells,” Solid State Ionics, 46, 299 (1991).
3. V. E. J. van Dieten and J. Schoonman, “Thin film techniques for solid oxide fuel cells,” Solid State Ionics, 57, 141 (1992).
4. C. C. Chen, M. M. Nasrallah, and H. U. Anderson, “Synthesis and characterization of YSZ thin film electrolytes,” Solid State Ionics,
70-71, 101 (1994).
5. T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki, and M. Sano, “An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance with Hydrocarbons than with Hydrogen,” Electrochem. Solid-State Lett., 5, A242 (2002).
6. Z. Shao and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Nature, 431, 170 (2004).
7. A.C. Muller, A. Weber, H.-J. Beie, A. Kru¨gel, D. Gerthsen, E. Ivers-Tiffee, Proc. of 3rd European SOFC Forum, European Fuel Cell Forum, Oberrohrdorf, Switzerland, 353-362 (1998).
8. T. Iwata, “Characterization of Ni-YSZ Anode Degradation for Substrate-Type Solid Oxide Fuel Cells,” J. Electrochem. Soc. 143, 1521 (1996).
9. H. Itoh, T. Yamamoto, M. Mori, T. Abe, Proc. of 4th Int. Symp. on SOFC, The Electrochemical Society, Pennington, NJ, 639-648 (1995).
10. A.C. Muller, A. Weber, A. Kru¨gel, D. Gerthsen, E. Ivers-Tiffee, Proc. of IEKC, vol. 6, Advanced Ceramics and Composites, Stuttgart (1998).
11. Keqin Huang,*, a Jen-Hau Wan,* and John B. Goodenough, “Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials,” J. Electrochem. Soc., 148 [7], A788-A794 (2001).
12. N. Q. Minh, T. Takahashi, “Science and technology of ceramic fuel cell,” Elsevier Science B. V., 11, 92-96 (1995).
13. K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxide fuel cell,” J. Alloys. Compds., 250, 486-491 (1997).
14. R. Cordingley, L. Kohan, B. Ben-Nissan and G. Pezzotti, “Zirconia and Partially Stabilised Zirconia as an Orthopaedic Biomaterial – Characteristics, Properties, Performance and Applications,” Journal of the Australasian Ceramic Society, Vol. 39, No. 1, 20-28 (2003).
15. H. Kaneko, F. Jin and H. Taimarsu, “Electrical conductivity of zirconia stabilized with scandia and yttria,” J. Am. Ceram. Soc., 76[3] 793-795(1993).
16. H. Yamamura, N. Utsunomiya, T. Mori, T. Atake, “Electrical conductivity in the system ZrO2-Y2O3-Sc2O3,” Solid State Ionics., 107 185-189 (1998).
17. 羅文志,”氧空缺控制對氧化鋯離子導電率之研究”,台灣,台灣科技大學材料科技研究所碩士論文,民國95年7月。
18. 黃鎮江,“燃料電池”,全華科技圖書,第6-1頁,中華民國九十二年十一月。
19. N. Q. Minh, “Ceramic Fuel Cells,” J. Am. Ceram. Soc. 76, 563 (1993).
20. F. J. Rohr, in: P. Hagnemuller, W. van Gool (Eds.), “Solid Electrolytes,” Academic Press, New York, 431(1978).
21. Y. Sakaki, Y. Esaki, M. Hattori, H. Miyamoto, T. Satake,F. Nanjo, T. Matudaira, K. Takenobu, in: U.Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (eds), Proceeding of the fifth International Symposium on Solid Oxide Fuel Cells, 61(1997).
22. S. Linderoth, P.V. Hendriksen, M. Mogensen, N. Langvad, ” Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks,” J. Mater.Sci., 31, 5077 (1996).
23. http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/
(2006)
24. S. Adler, Solid oxide fuel cells, Course Notes, “Department of Chemical Engineering”, University of Washington, (2003).
25. J. W. Yan, Z. G. Lu, Y. Jiang, Y. L. Dong, C. Y. Yu, W. Z. Li, “Fabrication and testing of a doped lanthanum gallate electrolyte thin film solid oxide fuel cell”, J. Electrochem. Soc., 149 [9], A1132–A1135 (2002).
26. K. Ukai, Y. Mizutani, Y. Kume, “Current status of SOFC development using scandia doped Zirconia”, SOFC VII 375 (2001).
27. S.C. Sinhal, “Solid oxide fuel cells for stationary, mobile, and military applications,” Solid State Ionics, 152-153, 405-410 (2002).
28. R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, “Physical, microstructural, and thermomechanical properties of ZrO2 single crystals,” 408-14 in Advances in ceramics, Vol. 12, Science and technology of Zirconia II. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. American ceramic society, Clumbus, OH (1984).
29. R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, “Temperature dependence of strength and fracture toughness of ZrO2 single crystals,” J. Am. Ceram. Soc., 65 [9], C150-C152(1982).
30. D. Michel, L. Mazerolles, and M. Perez y Jorba, “Fracture of metastable tetragonal zirconia crystals,” J. Mater. Sci., 18, 2618-2628 (1983).
31. 許崴棋,”異價離子共摻雜對氧化鋯與氧化鈰之晶體結構與導電性質之影響”,台灣,台灣科技大學材料科技研究所碩士論文,民國94年6月。
32. J. F. Baumard and P. Abelard, “In Science and Technology of Zirconia II,” N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH , 555 (1984).
33. Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn., 1610 (1997).
34. N. H. Anderson, K. Claussen, M. A. Hackett, W. Hayes, M. T. Hutchings, J. E. Macdonald, and R. Osborn, “In Transport-Structure Relations in Fast Ion and Mixed Conductor,” F. W. Poulsen, N. H. Anderson, K. Clausen, S. Skaarup, and O. T. Sørensen (eds.), Risø National Laboratory, Roskilde, Denmark, 279 (1985).
35. A. Nakamura and J. B. Wagner, Jr., ” Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure,” J. Electrochem. Soc., 133 , 1542-1548 (1986).
36. Y. Suzuki and K. Sugiyama, J. Ceram. Soc. Jpn. Intl. Ed., 95, 480 (1987).
37. E. C. Subbarao, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), J. Am. Ceram. Soc., Columbus, OH, 1 (1981).
38. E. N. Timofeeva, N. I. Timofeeva, L. N. Drozdova, and O. A. Mordovin, Izv. Akad. Nauk SSSR, Neorg. Mater., 5 [6] 1155-1156 (1969).
39. A. Jakobsson, D. Sichen, and S. Seetharaman, Metall. Trans. B, 24B [6], 1023-1030 (1993).
40. D. S. Kamenetskaya, T. T. Riskiev, B. L. Revzin, and L. M. Ni, Izv. Akad. Nauk SSSR, Neorg. Mater., 21 [3], 422-425 (1985).
41. J.P. Ouweltjes, F.P.F. van Berkel, P. Nammensma, G.M. Christie,
in: S.C. Singhal, M. Dokiya (Eds.), Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells, PV 99-19, The Electrochemical Society, Pennington, NJ, p.803 (1999).
42. A. Bieberle, L.P. Meier, L.J. Gauckler, “The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes,” J. Electrochem. Soc., 148, A646 (2001).
43. N. Nakagawa, K. Nakajima, M. Sato, K. Kato, “Contribution of the Internal Active Three-Phase Zone of Ni-Zirconia Cermet Anodes on the Electrode Performance of SOFCs,” J. Electrochem. Soc., 146, 1290 (2001).
44. X. Wang, N. Nakagawa, K. Kato, “Anodic Polarization Related to the Ionic Conductivity of Zirconia at Ni-Zirconia/Zirconia Electrodes,” J. Electrochem. Soc., 148, A565 (2001).
45. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, “Protonic conduction in calcium, strontium and barium zirconates,” Solid State
Ionics, 61, 65 (1993).
46. T. Yajima, H. Kazeoka, T. Yogo, H. Iwahara, “Proton conduction in sintered oxides based on CaZrO3,” Solid State Ionics, 47, 271 (1991).
47. T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, “Protonic conduction in SrZrO3-based oxides,” Solid State Ionics, 51, 101 (1992).
48. G.C. Mather a,∗, F.M. Figueiredo b,c, J.R. Jurado a, J.R. Frade b, “Electrochemical behaviour of Ni-cermet anodes containing a proton-conducting ceramic phase on YSZ substrate,” Electrochemica Acta, 49, 2601–2612 (2004).
49. N.Q. Minh, J. Am. Ceram. Soc., 76[3], 563, (1993).
50. 黃忠良,”基本電化學”,復漢出版社,台灣,238頁-243頁,民國96年6月。
51. S. Park, J.M. Vohs, R.J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Nature, 404, 265 (2000).
52. S. Tao and J. T. S. Irvine, “A redox-stable efficient
anode for solid-oxide fuel cells.,” Nat. Mater., 2, 320 (2003).
53. E. S. Putna, J. Stubenrauch, J. M. Vohs, and R. J. Gorte, “Ceria-Based anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells,” Langmuir, 11, 4832 (1995).
54. J. Liu, B. D. Madsen, Z. Ji, and S. A. Barnett, “A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells,” Electrochem. Solid-State Lett., 5, A122 (2002).
55. S. McIntosh, J. M. Vohs, and R. J. Gorte, “Effect of Precious-Metal Dopants on SOFC Anodes for Direct Utilization of Hydrocarbons,” Electrochem. Solid-State Lett., 6, A240 (2003).
56. S. Takenaka, Y. Shigeta, E. Tanabe, and K. Otsuka, “Methane decomposition into hydrogen and carbon nanofibers over supported Pd–Ni catalysts,” J. Catal., 220, 468 (2003).
57. Yuta Nabae,a Ichiro Yamanaka,a,*,z Masaharu Hatano,b and Kiyoshi Otsukaa, “Catalytic Behavior of Pd–Ni/Composite Anode for Direct
Oxidation of Methane in SOFCs,” J. Electrochem. Soc., 153, 1, A140-A145 (2006)
58. S. Primdhal, M. Mogensen, “Oxidation of hydrogen on Ni/yttriastabilized zirconia cermet anodes,” J. Electrochem. Soc., 144, 3409 (1997).
59. D. Simwonis, F. Tietz, D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells,” Solid State Ionics 132, 241 (2000).
60. D. Skarmoutsosa ,*, A. Tsogab,1, A. Naoumidisb, P. Nikolopoulosa, “5 mol% TiO -doped Ni–YSZ anode cermets for solid oxide fuel cells,” Solid State Ionics, 135, 439-444 (2000).
61. A.C. Mu¨ ller, A. Weber, H.-J. Beie, A. Kru¨gel, D. Gerthsen,
E. Ivers-Tiffe´e, Proc. of 3rd European SOFC Forum, European
Fuel Cell Forum, Oberrohrdorf, Switzerland, pp.
353-362 (1998).
62. T. Iwata, “Characterization of Ni-YSZ Anode Degradation for Substrate-Type Solid Oxide Fuel Cells,” J. Electrochem. Soc. 143, 1521 (1996).
63. H. Itoh, T. Yamamoto, M. Mori, T. Abe, Proc. of 4th Int. Symp. on SOFC, The Electrochemical Society, Pennington, NJ, 639-648 (1995).
64. A.C. Mu¨ ller, A. Weber, A. Kru¨gel, D. Gerthsen, E. Ivers-Tiffe
´e, Proc. of IEKC, vol. 6, Advanced Ceramics and Composites, Stuttgart (1998).
65. T. Weber, “Joining of nickel powder grains by thermal oxidation,” Solid State Ionics, 42, 205-221 (1990).
66. M. Cassidy, G. Lindsay, K. Kendall, Proc. 1st Eur. SOFC Forum, pp. 205-221 (1994).
67. Axel C. Mu¨ ller *, Dirk Herbstritt, Ellen Ivers-Tiffe´e, ” development of a multilayer anode for solid oxide fuel cells,” Solid State Ionics, 152-153, 537– 542 (2002).
68. K. Z. Fung and A. V. Virkar, Proceeding of the 4th International
Symposium on Solid Oxide Fuel Cells, M. Dokiya, O. Yamamoto H.
Tagawa and S. C. Singhal, Eds., 1105 (1995).
69. T. Kenjo and Y. Yamakoshi, “Relaxation Phenomena of the Concentration Polarization in High Temperature Air Cathodes,” Bull. Chem. Soc. Jpn., 65, 995 (1992).
70. J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, and S. C. Singhal, “Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron,” J. Electrochem. Soc., 146, 69 (1999).
71. D. Herbstritt, A. Weber, and E. Ivers-Tiff’ee, “Modelling and DC-polarisation of a three dimensional electrode/electrolyte interface,” J. Europ. Ceram. Soc., 21, 1813 (2001).
72. T. Tsai and S. A. Barnett,”Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance,” Solid State Ionics, 93, 207 (1997).
73. J. A. Lane and B. C. H. Steele, “Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes,” J. Electrochem. Soc., 143,
3554(1996).
74. T. Kenjo, S. Osawa, and K. Fujikawa, “High Temperature Air Cathodes Containing Ion Conductive Oxides,” J. Electrochem. Soc., 138,
349 (1991).
75. T. Kenjo and M. Nishiya, ”LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells,” Solid State Ionics, 57, 295 (1992).
76. H. Deng, M. Zhou, and B. Abeles, “Diffusion-reaction in mixed ionic-electronic solid oxide membranes with porous electrodes,” Solid State Ionics, 74, 75 (1994).
77. C. W. Tanner, K. Z. Fung, and A. V. Virkar, “The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance,” J. Electrochem. Soc., 144, 21 (1997).
78. A. V. Virkar, J. Chen, C. W. Tanner, and J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells,” Solid State Ionics, 131, 189 (2000).
79. H. Kamata, A. Hosaks, J. Mizusaki, and H. Tagawa, “High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ,” Solid State Ionics, 106, 237 (1998).
80. S. P. Jaing, J. P. Zhang, L. Apateanu, and K. Foger, “Deposition of Chromium Species at Sr-Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on O2 Reduction Reaction,” J. Electrochem. Soc., 147, 3195 (2000).
81. S. P. Jaing, J. P. Zhang, L. Apateanu, and K. Foger, “Deposition of Chromium Species at Sr-Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics,” J. Electrochem. Soc., 147, 4013 (2000).
82. S. P. S. Badwal, S. P. Jiang, J. Love, J. Nowotny, M. Rekas, and E. R.
Vance, “Chemical diffusion in perovskite cathodes of solid oxide fuel cells: the Sr doped LaMn1−xMxO3 (M=Co, Fe) systems,” Ceram. Int., 27, 419 (2001).
83. E. A. Mason, A. P. Malinauskas, Gas Transport in Porous Media:The Dusty Gas Model, Elsevier, Amsterdam, (1983).
84. R. Jackson, Transport in Porous Catalyst, Elsevier, Amsterdam,
(1977).
85. Stuart B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes,” Chem. Rev., 104, 4791-4843(2004).
86. Subhash C Singhal, Kevin Kendall, “High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications,” Elsevier Ltd, 158-159 (2003).
87. James T. Richardson a,∗, Robert Scates a, Martyn V. Twigg b, “X-ray diffraction study of nickel oxide reduction by hydrogen,” Applied Catalysis A: General 246, 137–150 (2003).
88. A. Kuzjukevicsa,b,*, S. Linderose a, “Interaction of NiO with yittria-stablized zirconia,” Solid State Ionics, 93, 255-261 (1997).

QR CODE