Basic Search / Detailed Display

Author: 江翊瑋
I-Wei Chiang
Thesis Title: 毫米波回程網路下以負載感知及用戶為中心的下行鏈路協同聚類設計
Design of the Downlink Load-Aware and User-Centric CoMP Clustering in the mmWave Backhaul Network
Advisor: 馮輝文
Huei-Wen Ferng
Committee: 張宏慶
Hung-Chin Jang
林嘉慶
Jia-Chin Lin
范欽雄
Chin-Shyurng Fahn
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2022
Graduation Academic Year: 110
Language: 中文
Pages: 45
Keywords (in Chinese): 毫米波第五代行動通訊超高密度網路協調式多點傳送快取聯盟博弈理論
Keywords (in other languages): mmWave, 5G Mobile Communication, UDN, CoMP, Cache, Coalition Game Theory
Reference times: Clicks: 225Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 現今網路連線裝置的急速增加造成基站(Base Station, BS) 負荷量加重,雖密集部署基站可加以解決,但將造成干擾(Interference) 上升,整體網路效能(Performance) 因此下降,於是,如何取得平衡(Balance) 是重要的議題。因此,本論文將提出以使用者為中心的協調式多點(Coordinated Multipoint, CoMP) 演算法,其可對密集部署環境、密集使用者區域獲得改善,讓整體網路可服務的使用者最大化(Maximize)。為了讓基站能最大程度地被利用(Utilizated),我們以聯盟博弈理論(Coalition Game Theory) 為基礎對不同的基站聚類(Cluster) 進行調配(Deployment),並優先處理消耗較小回程資源的使用者需求,以降低基站資源的浪費。最後,透過模擬方法進行機制間的比較,結果顯示本論文提出之演算法除了能最大化接受服務之使用者數量,並能維持低回程資源消耗,優於文獻上其他相近之方法。


    Nowadays, the rapid increase of network connection devices causes the load of the base station (BS) to increase. Although densely deployed BSs can solve the aforementioned problem, it will bring more interference, thus lowering the overall network performance.Therefore, how to balance is an important issue. Towards this goal this paper will propose a user-centric coordinated multipoint (CoMP) algorithm to improve the performance in the densely deployed environment with dense users and maximize the number of affordable users. In order to maximize the utilization of BSs, we deploy different BSs clusters based on coalition game theory and prioritize the users with less backhaul resources requirements to reduce the waste of BSs resources. Finally, through the comparison among the mechanisms via the simulation approach, the results show that our proposed algorithm can not only maximize the number of users served but also keep low backhaul resource consumption, outperforming the closely related algorithms in the literature.

    論文指導教授推薦書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 接取與回程整合網路 . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 超高密度網路 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 協調式多點傳送 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 下行鏈路的協調式多點傳送 . . . . . . . . . . . . . . . . . . . 5 1.2.2 協調式多點的動態聚類 . . . . . . . . . . . . . . . . . . . . . . 6 1.3 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 章節安排 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章、相關文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 優先資源受限的協同多點演算法 . . . . . . . . . . . . . . . . . . . . . 9 2.2 多跳回程協調多點演算法 . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 聯合用戶關聯和功率分配演算法 . . . . . . . . . . . . . . . . . . . . . 14 第三章、方法設計與流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 問題定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 方法設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 負載指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 聯盟博弈理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.3 使用者優先權 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第四章、模擬結果與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 模擬環境設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 數值結果比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第五章、結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials,challenges, deployment, and practice,” IEEE journal on selected areas in communications, vol. 35, no. 6, pp. 1201–1221, Jun. 2017.
    [2] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view,” IEEE Access, vol. 6, pp. 55765–55779, Sep. 2018.
    [3] 3GPP, “NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone,” Technical specification (TS) 38.101-1, 3rd Generation Partnership Project (3GPP), Dec. 2017.
    [4] M. Cudak, A. Ghosh, A. Ghosh, and J. Andrews, “Integrated access and backhaul: A key enabler for 5G millimeter-wave deployments,” IEEE Communications Magazine, vol. 59, no. 4, pp.88–94, Dec. 2021.
    [5] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE communications magazine, vol. 49, no. 6, pp. 101–107, Jun. 2011.
    [6] A. AlAmmouri, M. Gupta, F. Baccelli, and J. G. Andrews, “Escaping the densification plateau in cellular networks through mmwave beamforming,” IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 1874–1878, Nov. 2020.
    [7] Y. Zhang, M. A. Kishk, and M.-S. Alouini, “A survey on integrated access and backhaul networks,” arXiv preprint arXiv:2101.01286, Aug. 2021.
    [8] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G evolution: A view on 5G cellular technology beyond 3GPP release 15,” IEEE Access, vol. 7, pp. 127639–127651, Sep. 2019.
    [9] M. Polese, M. Giordani, T. Zugno, A. Roy, S. Goyal, D. Castor, and M. Zorzi, “Integrated access and backhaul in 5G mmWave networks: Potential and challenges,” IEEE Communications Magazine, vol. 58, no. 3, pp. 62–68, Mar. 2020.
    [10] 3GPP, “NR; Study on integrated access and backhaul,” Technical Report (TR) 38.874, 3rd Generation Partnership Project (3GPP), Dec. 2018.
    [11] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2522–2545, May. 2016.
    [12] 胡哲源, “超高密度網路之干擾協調技術,” Journal of Information and Communications Technology, Apr. 2018.
    [13] Z. Gao, L. Dai, D. Mi, Z. Wang, M. A. Imran, and M. Z. Shakir, “MmWave massiveMIMO-based wireless backhaul for the 5G ultra-dense network,” IEEE Wireless communications, vol. 22, no. 5, pp. 13–21, Oct. 2015.
    [14] R. Baldemair, T. Irnich, K. Balachandran, E. Dahlman, G. Mildh, Y. Selén, S. Parkvall, M. Meyer, and A. Osseiran, “Ultra-dense networks in millimeter-wave frequencies,” IEEE Communications Magazine, vol. 53, no. 1, pp. 202–208, Jan. 2015.
    [15] H. Sun, W. Fang, J. Liu, and Y. Meng, “Performance evaluation of CS/CB for coordinated multipoint transmission in LTE-A downlink,” in Proc. IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), pp. 1061–1065, IEEE, Sep. 2012.
    [16] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, and T. Svensson, “The role of small cells, coordinated multipoint,and massive MIMO in 5G,” IEEE communications magazine, vol. 52, no. 5, pp. 44–51, May. 2014.
    [17] A. Davydov, G. Morozov, I. Bolotin, and A. Papathanassiou, “Evaluation of joint transmission CoMP in C-RAN based LTE-A HetNets with large coordination areas,” in Proc. IEEE Globecom Workshops (GC Wkshps), pp. 801–806, IEEE, Dec. 2013.
    [18] R. Agrawal, A. Bedekar, R. Gupta, S. Kalyanasundaram, H. Kroener, and B. Natarajan, “Dynamic point selection for LTE-advanced: Algorithms and performance,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 1392–1397, IEEE, Apr. 2014.
    [19] Q. Hu and D. M. Blough, “On the feasibility of high throughput mmWave backhaul networks in urban areas,” in Proc. International Conference on Computing, Networking and Communications (ICNC), pp. 572–578, IEEE, Feb. 2020.
    [20] J. Xu, J. Yao, L. Wang, K. Wu, L. Chen, and W. Lou, “Revolution of self-organizing network for 5G mmWave small cell management: From reactive to proactive,” IEEE Wireless Communications, vol. 25, no. 4, pp. 66–73, Aug. 2018.
    [21] S. Bassoy, H. Farooq, M. A. Imran, and A. Imran, “Coordinated multi-point clustering schemes: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 743–764, Feb. 2017.
    [22] K. Humadi, I. Trigui, W.-P. Zhu, and W. Ajib, “User-Centric Cluster Design and Analysis for Hybrid Sub-6GHz-mmWave-THz Dense Networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 7, pp. 7585–7598, Apr. 2022.
    [23] K. Humadi, I. Trigui, W.-P. Zhu, and W. Ajib, “Dynamic base station clustering in user-centric mmWave networks: Performance analysis and optimization,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4847–4861, Apr. 2021.
    [24] A. Askri and G. R.-B. Othman, “Priority-Resource-Limited JT-CoMP Scheme for Small Dense Networks,” in Proc. IEEE International Mediterranean Conference on Communications and Networking (MeditCom), pp. 306–311, IEEE, Sep. 2021.
    [25] Y.-J. Yu, T.-Y. Hsieh, and A.-C. Pang, “Millimeter-wave backhaul traffic minimization for CoMP over 5G cellular networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4003–4015, Apr. 2019.
    [26] Q. Zhang, W. Ma, Z. Feng, and Z. Han, “Backhaul-capacity-aware interference mitigation framework in 6G cellular internet of things,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10071–10084, Jun. 2021.
    [27] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and processing in mobileedge computing networks,” IEEE Transactions on Mobile Computing, vol. 18, no. 9, pp. 1965–1978, Sep. 2018.
    [28] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE journal on selected areas in communications, vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
    [29] Y. Liu, X. Fang, P. Zhou, and K. Cheng, “Coalition game for user association and bandwidth allocation in ultra-dense mmWave networks,” in Proc. IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–5, IEEE, Oct. 2017.
    [30] Y. Chen, Y. Niu, B. Ai, Z. Zhong, D. Wu, and K. Li, “Using coalition games for QoS aware scheduling in mmWave WPANs,” in Proc. IEEE 87th vehicular technology conference (VTC Spring), pp. 1–6, IEEE, Jun. 2018.
    [31] M. Eliodorou, C. Psomas, I. Krikidis, and S. Socratous, “User association coalition games with zero-forcing beamforming and NOMA,” in Proc. IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5, IEEE, Jul. 2019.
    [32] C. Dehos, J. L. González, A. De Domenico, D. Ktenas, and L. Dussopt, “Millimeterwave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems?,” IEEE communications magazine, vol. 52, no. 9, pp. 88–95, Sep. 2014.
    [33] A. A. Ajani, V. K. Oduol, and Z. K. Adeyemo, “GPON and V-band mmWave in green backhaul solution for 5G ultra-dense network,” International Journal of Electrical and Computer Engineering, vol. 11, no. 1, p. 390, Feb. 2021.

    無法下載圖示 Full text public date 2024/09/29 (Intranet public)
    Full text public date 2024/09/29 (Internet public)
    Full text public date 2024/09/29 (National library)
    QR CODE