簡易檢索 / 詳目顯示

研究生: Nadhif Muhammad Rekoputra
Nadhif Muhammad Rekoputra
論文名稱: 5G 多接取邊緣運算網路效能評估
Performance Evaluation of 5G MultiAccess Edge Computing networks
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 鄭瑞光
Ray-Guang Cheng
鄭欣明
Shin-Ming Cheng
許獻聰
Shiann- Tsong Sheu
王瑞堂
Ruei-Tang Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 46
中文關鍵詞: 5G networkMulti-Access Edge ComputingPerformance Evaluation
外文關鍵詞: 5G network, Multi-Access Edge Computing, Performance Evaluation
相關次數: 點閱:498下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智能移動設備和5G 網絡的廣泛使用,互聯網上創造了多種服
    務。互聯網上提供的許多服務,例如物聯網、虛擬現實和在線遊戲,都具
    有低延遲和高吞吐量的要求。為了實現這一要求,邊緣計算的鄰近性能夠
    減少延遲,並提高用戶的體驗質量。長距離網絡會導致更多的數據包擁塞
    和數據包丟失。這會影響用戶的體驗質量和滿意度。為了提高用戶體驗
    質量,需要一個具有不同類型接入技術(包括有線和無線)的多接入邊
    緣計算(MEC)網絡。在本文中,我們對新創建的NTUST 多接入邊緣
    計算(MEC) 網絡進行了一些測試。我們想通過使用不同的接入技術以及
    我們的移動邊緣計算網絡處理大量用戶和巨大流量的能力來找出多接入
    網絡的性能。完成了網絡性能測試、流測試和負載測試。性能測試結果
    顯示,5G 加MEC 下行吞吐量746.92Mbps,平均時延16.47ms,而5G
    不加MEC 下行吞吐量402.50Mbps,平均時延21.34ms。流媒體測試向
    我們展示了帶有MEC 的5G 的平均延遲為28.30 毫秒,而沒有MEC 的
    5G 處理流媒體服務的平均延遲為44.80 毫秒。性能和流媒體測試都顯示
    了MEC 技術在網絡中的重要性。負載測試表明,當用戶數在10 個以上
    時,5G 與MEC 相比WiFi
    6 具有更好的性能,這表明5G 與MEC 相比
    具有更好的處理大量用戶的能力而不是WiFi
    6(802.11 斧頭)


    With the widespread use of smart mobile devices and 5G network,
    many kinds of service on the internet is created. Many services that is
    served on the internet, such as Internet of Things, virtual reality, and online
    gaming has a low latency and high throughput requirements. To achieve
    this requirements, the proximity of edge computing have the ability to reduce
    latency, and improve user’s quality of experience. A long distance
    network will result in more packet congestion and packet loss. This will affect
    the user’s quality of experience and satisfaction. To improve the quality
    of user’s experience, a Multiaccess
    Edge Computing(MEC) network
    with different kinds of access technologies, including wired and wireless,
    is needed. In this paper we do some testing on the newly created NTUST
    MEC network. A network performance testing, streaming testing, and load
    testing were done. The result of the performance test shows that 5G with
    MEC has a downlink throughput of 746.92 Mbps and average latency of
    16.47 ms, while 5G without MEC has a downlink throughput of 402.50
    Mbps and average latency of 21.34 ms. The streaming test shows us the
    that 5G with MEC has an average latency of 28.30 ms, while 5G without
    MEC has an average latency of 44.80 ms handling a streaming service.
    Both performance and streaming test show the importance of MEC technology
    in the network. The load test shows that 5G with MEC have a better
    performance rather than WiFi 6 when the number of users is above 10 users,
    this demonstrates that 5G with MEC have a better capacity to handle many
    users rather than WiFi 6(802.11ax).

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 NTUST 5G MultiAccess Edge Computing(MEC) Signalling Analysis and Traffic Processing . . . . . . . . . . . . . . 6 2.2 NTUST MultiAccess Edge Computing Network . . . . . 10 2.3 MEC Platform Management System . . . . . . . . . . . . 11 2.4 MultiAccess Edge Computing(MEC) Applications . . . . 12 3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 NTUST MultiAccess Edge Computing Network Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Streaming Evaluation . . . . . . . . . . . . . . . . . . . . 15 3.3 Load Test Evaluation . . . . . . . . . . . . . . . . . . . . 17 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Performance Test Evaluation . . . . . . . . . . . . . . . . 20 4.2 Streaming Test Evaluation . . . . . . . . . . . . . . . . . 23 4.3 Load Test Evaluation . . . . . . . . . . . . . . . . . . . . 26 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 30

    [1] Cisco. ”Cisco Annual Internet Report (2018–2023)”.Tech. rep. 2020.URL: https :
    / / www. cisco . com / c / en /us / solutions / collateral / executive perspectives
    /
    annual internetreport/
    whitepaperc11741490.
    html.
    [2] S. Kitanov and T. Janevski, ”State of the Art: Mobile Cloud Computing,” 2014 Sixth
    International Conference on Computational Intelligence, Communication Systems
    and Networks, Tetova, 2014, pp. 153158,
    doi: 10.1109/CICSyN.2014.41.
    [3] M. Satyanarayanan et al., ” An open ecosystem for mobilecloud
    convergence,”
    in IEEE Communications Magazine, vol. 53, no. 3, pp. 6370,
    March 2015, doi:
    10.1109/MCOM.2015.7060484.
    [4] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, ”The Case for VMBased
    Cloudlets in Mobile Computing,” in IEEE Pervasive Computing, vol. 8, no. 4, pp.
    1423,
    Oct.Dec.
    2009, doi: 10.1109/MPRV.2009.82.
    [5] M. Simsek, A. Aijaz, M. Dohler, J. Sachs and G. Fettweis, ”5GEnabled
    Tactile
    Internet,” in IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp.
    460473,
    March 2016, doi: 10.1109/JSAC.2016.2525398.
    [6] J. G. Andrews et al., ” What Will 5G Be?,” in IEEE Journal on Selected Areas
    in Communications, vol. 32, no. 6, pp. 10651082,
    June 2014, doi: 10.1109/
    JSAC.2014.2328098.
    [7] ”IMT Vision Framework
    and overall objectives of thefuture development of IMT
    for 2020 and beyond”. Tech.rep. ITUR
    (Radiocommunication Sector of ITU),
    Sept.2015.
    [8] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. 2012. ”
    Cloudlets: bringing the cloud to the mobile user”. In Proceedings of the third
    ACM workshop on Mobile cloud computing and services (MCS ’12). Association
    for Computing Machinery, New York, NY, USA, 29–36. DOI:https://doi.org/
    10.1145/2307849.2307858
    [9] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. AlAyyoub
    and E. Benkhelifa,
    ”SDMEC: Software Defined System for Mobile Edge Computing,” 2016 IEEE
    International Conference on Cloud Engineering Workshop (IC2EW), Berlin, 2016,
    pp. 8893,
    doi: 10.1109/IC2EW.2016.45.
    [10] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, ”Mobile Edge Computing: A Survey,”
    in IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450465,
    Feb. 2018, doi:
    10.1109/JIOT.2017.2750180.
    [11] T. X. Tran, A. Hajisami, P. Pandey and D. Pompili, ”Collaborative Mobile Edge
    Computing in 5G Networks: New Paradigms, Scenarios, and Challenges,” in IEEE
    Communications Magazine, vol. 55, no. 4, pp. 5461,
    April 2017, doi: 10.1109/
    MCOM.2017.1600863.
    [12] L. Cominardi, T. Deiss, M. Filippou, V. Sciancalepore, F. Giust and D. Sabella, ”
    MEC Support for Network Slicing: Status and Limitations from a Standardization
    Viewpoint,” in IEEE Communications Standards Magazine, vol. 4, no. 2, pp. 2230,
    June 2020, doi: 10.1109/MCOMSTD.001.1900046.
    [13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, ”Mobile Edge Computing
    A
    keytechnology towards 5G”. Tech. rep. ETSI (EuropeanTelecommunications
    Standards Institute), Sept. 2015.
    [14] N. Nikaein, X. Vasilakos and A. Huang, ”LLMEC:
    Enabling Low Latency Edge Applications,”
    2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
    Tokyo, 2018, pp. 17,
    doi: 10.1109/CloudNet.2018.8549500.
    [15] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini and C. Bonnet, ” Low latency
    MEC framework for SDNbased
    LTE/ LTEA
    networks,” 2017 IEEE International
    Conference on Communications (ICC), Paris, 2017, pp. 16,
    doi: 10.1109/
    ICC.2017.7996359.
    [16] Huawei et al.”MobileEdge
    Computing –Introductory
    Technical White Paper”.
    Tech. rep. Sept. 2014.URL: https : / / portal . etsi . org / portals / 0 / tbpages /mec /
    docs / mobile edgecomputingintroductorytechnicalwhitepaperv1
    [17] M. Chen and Y. Hao, ”Task Offloading for Mobile Edge Computing in Software
    Defined UltraDense
    Network,” in IEEE Journal on Selected Areas in Communications,
    vol. 36, no. 3, pp. 587597,
    March 2018, doi: 10.1109/JSAC.2018.2815360.
    [18] J. Liu, Y. Mao, J. Zhang and K. B. Letaief, ” Delayoptimal
    computation task
    scheduling for mobileedge
    computing systems,” 2016 IEEE International Symposium
    on Information Theory (ISIT), Barcelona, 2016, pp. 14511455,
    doi: 10.1109/
    ISIT.2016.7541539.
    [19] F. Wang, J. Xu, X. Wang and S. Cui, ”Joint Offloading and Computing Optimization
    in Wireless Powered MobileEdge
    Computing Systems,” in IEEE Transactions on
    Wireless Communications, vol. 17, no. 3, pp. 17841797,
    March 2018, doi: 10.1109/
    TWC.2017.2785305.
    [20] Q. Zheng, Z. Ping and P. Lin, ”Performance Evaluation of Applications Assisted
    with Twotier
    MEC Architecture Using High Performance Drives,” 2019 IEEE 4th
    International Conference on Cloud Computing and Big Data Analysis (ICCCBDA),
    Chengdu, China, 2019, pp. 523528,
    doi: 10.1109/ICCCBDA.2019.8725705.
    [21] J. Liu, G. Shou, Y. Liu, Y. Hu and Z. Guo, ”Performance Evaluation of Integrated
    MultiAccess
    Edge Computing and FiberWireless
    Access Networks,” in IEEE Access,
    vol. 6, pp. 3026930279,
    2018, doi: 10.1109/ACCESS.2018.2833619.
    [22] C. Quadri, S. Gaito, R. Bruschi, F. Davoli and G. P. Rossi, ”A MEC Approach to
    Improve QoE of Video Delivery Service in Urban Spaces,” 2018 IEEE International
    Conference on Smart Computing (SMARTCOMP), Taormina, 2018, pp. 2532,
    doi:
    10.1109/SMARTCOMP.2018.00095.
    [23] E. Coronado, Z. Yousaf and R. Riggio, ”LightEdge: Mapping the Evolution of
    MultiAccess
    Edge Computing in Cellular Networks,” in IEEE Communications
    Magazine, vol. 58, no. 4, pp. 2430,
    April 2020, doi: 10.1109/MCOM.001.1900690.
    [24] U. Fattore, M. Liebsch and C. J. Bernardos, ”UPFlight: An enabler for Avionic
    MEC in a droneextended
    5G mobile network,” 2020 IEEE 91st Vehicular Technology
    Conference (VTC2020Spring),
    2020, pp. 17,
    doi: 10.1109/ VTC2020Spring48590.2020.9128732.
    [25] M. Mortimer. “iperf3 Documentation”. In: (May2018).
    [26] ”YouTube User Statistics 2020”. July 2020.URL: https :/ / www. globalmediainsight
    . com / blog / youtube users
    statistics/.
    [27] T. Barnett Jr, S. Jain, U. Andra, T. Khurana, ”Cisco Visual Networking Index
    (VNI)
    Complete Forecast Update 20172022”.
    Dec.2018.URL: https : / / www . cisco . com
    / c / dam / m /enus / network intelligence
    / service provider
    / digital transformation
    / knowledge network
    webinars
    / pdfs /1213businessservicesckn.
    pdf
    [28] Z. M. Jiang and A. E. Hassan, ”A Survey on Load Testing of LargeScale
    Software
    Systems,” in IEEE Transactions on Software Engineering, vol. 41, no. 11, pp. 10911118,
    1 Nov. 2015, doi: 10.1109/TSE.2015.2445340.
    [29] F. Huebner, K. S. MeierHellstern,
    and P. Reeser, “Performance testing for IP services
    and systems,”in Performance Eng., State of the Art and Current Trends. New
    York, NY, USA: Springer, 2001, pp. 283–299.
    [30] B. H. Lim, J. R. Kim and K. H. Shim, ”Hierarchical Load Testing Architecture using
    Large Scale Virtual Clients,” 2006 IEEE International Conference on Multimedia
    and Expo, 2006, pp. 581584,
    doi: 10.1109/ICME.2006.262475.
    [31] R. Abbas, Z. Sultan and S. N. Bhatti, ”Comparative analysis of automated load
    testing tools: Apache JMeter, Microsoft Visual Studio (TFS), LoadRunner, Siege,”
    2017 International Conference on Communication Technologies (ComTech), 2017,
    pp. 3944,
    doi: 10.1109/COMTECH.2017.8065747.

    QR CODE