研究生: |
張育維 Yu-wei CHANG |
---|---|
論文名稱: |
馬克-詹德方向耦合器研究 Mach–Zehnder Directional Coupler Study |
指導教授: |
徐世祥
Shih-Hsiang Hsu |
口試委員: |
張勝良
Sheng-Lyang Jang 范慶麟 Ching-Lin Fan 莊敏宏 Miin-Horng Juang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 馬克-詹德方向耦合器 |
外文關鍵詞: | Mach–Zehnder Directional Coupler |
相關次數: | 點閱:423 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來分光功率器廣泛被應用在光電積體電路上,像是光訊號的傳輸、放大、接收、和保護…等,還可以應用在差動相位偏移調變(Differential Phase Shift Keying,DPSK)的光解調變器(Dmodulator)及三工器(Triplexer)等地方。分光功率器最常見的為多模干涉器(Multimode Interference,MMI)和方向耦合器(Directional Coupler,DC),前者有體積小、製程容忍度高、極化不敏感以及對波長不敏感…等優點,但通常因設計方式,而被限制在只有幾種分光率上;後者在這一方面則有極大的的優勢,它可藉由調整耦合的長度達到任意的功率分配,但是卻有著製程容忍度低及波長敏感的缺點,故在此提出馬克-詹德方向耦合器(Mach–Zehnder Directional Coupler,MZDC)的方法,它是由兩段方向耦合器中間加上一段小的延遲長度所組成的,可改善波長敏感的缺點。
絕緣層上覆矽近年來廣泛應用於高速且低功耗電子元件,因為具有高折射率係數可大幅縮小元件體積,其製程方式與互補式金屬氧化物半導體製程相容,對發展光電積體電路有極大的潛力。本研究利用絕緣層上覆矽模擬設計、製程及量測馬克-詹德方向耦合器的分光元件,並將其應用在差動相位偏移調變的光解調變器上。文中馬克-詹德方向耦合器的設計分成三種不同的分光率,並探討其分光率在C(1530~1565nm)頻帶的輸出比例是否對波長有不敏感的現象。
使用差動相位偏移調變系統是為了改善傳統的開關調變系統,在高速長距離傳輸過程中會引起較嚴重的色散。差動相位偏移調變系統與振幅調變系統不同的是在接收端,為了恢復未編碼前的二進制數據,需加入一個延遲干涉儀做解調的動作。最後使用馬克-詹德方向耦合器組成的延遲干涉儀做高速通訊解調變的應用。
In recent years, the optical power splitter is widely utilized in optoelectronic integrated circuits (OEIC) such as optical signal transmission, amplification, receiving, and protection. It can also be applied to the triplexer and optical demodulator differential phase shift keying (DPSK) modulation format. The most common power splitter is multimode interference (MMI) and directional coupler (DC). MMI owns the advantage on the small size, high process tolerance, and the insensitivity to polarization and wavelength. But the MMI structure is limited to few power splitting ratios because of its mirror image function. In the other hand, DC can achieve any combination of the output optical power distribution by adjusting the coupling length. But it suffers from low process tolerance and strong wavelength dependence. Therefore, the Mach–Zehnder directional coupler (MZDC) was proposed to construct two stages of DC by a small delay length between two DCs for the insensitive wavelength response.
The silicon-on-insulator (SOI) platform has been developed and demonstrated as a highly optoelectronic integrated circuits (OEIC) due to the large refractive index and its compatibility with the complementary metal oxide semiconductor (CMOS) standard process. In this study, we designed, processed, and characterized the SOI based MZDC for optical power splitting, and furthermore apply to the DPSK optical demodulator. Three different kinds of power splitting ratios between 1530 nm to 1565 nm (C band) were demonstrated less than 1-dB fluctuation on MZDC.
The DPSK modulation format is superior to on-off-keying on the significant dispersion from the high-speed long-haul transmission. The main difference between DPSK and amplitude modulation systems s at at the receiving end. In order to restore the uncoded binary data, it needs to add the action of a delay interferometer demodulation. Finally, the MZDC based delayed Mach-Zehnder interferometer was demonstrated and analyzed for demodulation in high speed communicant.
[1] F. Ning-Ning, F. Dazeng, L. Hong, Q. Wei, K. Cheng-Chih, J. Fong, and M. Asghari, "Low-Loss Polarization-Insensitive Silicon-on-Insulator-Based WDM Filter for Triplexer Applications," Photonics Technology Letters, IEEE, vol. 20, pp. 1968-1970, 2008.
[2] K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, "Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio," Electronics Letters, vol. 26, pp. 1326-1327, 1990.
[3] B. E. Little and T. Murphy, "Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures," Photonics Technology Letters, IEEE, vol. 9, pp. 1607-1609, 1997.
[4] S. H. Hsu, "Signal Power Tapped with Low Polarization Dependence and Insensitive Wavelength on SOI Platforms", Journal of the Optical Society of America B, 27(5), pp. 941-947, 2010.
[5] L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, "Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths," Optics Communications, vol. 210, pp. 43-49, 2002.
[6] D. Dai and S. He, "Analysis of the birefringence of a silicon-on-insulator rib waveguide," Appl. Opt., vol. 43, pp. 1156-1161, 2004.
[7] D.-X. Xu, W. N. Ye, S. Janz, Del, #226, A. ge, P. Cheben, B. Lamontagne, E. Post, and P. Waldron, "Stress Induced Effects for Advanced Polarization Control in Silicon Photonics Components," Advances in Optical Technologies, vol. 2008, 2008.
[8] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," Lightwave Technology, Journal of, vol. 23, pp. 1308-1318, 2005.
[9] R.A. Soref, J. Schmidtchen, and K. Petermann, "Large single mode RIB waveguides in GeSi-Si and Si-on-SiO2," IEEE Journal of Selected Topics in Quantum Electronics, 1991.
[10] Souren P. Pogossian, Lili Vescan and Adrian Vonsovici, "The single-mode condition for semiconductor rib waveguides with large cross section," Journal of Lightwave Technology, vol. 16, pp. 1851-1853, 1998.
[11] N. Dagli and C.G. Fonstad, "ANALYSIS OF RIB DIELECTRIC WAVEGUIDES," IEEE Journal of Quantum Electronics, vol. QE-21, pp. 315-321, 1985.
[12] O. Powell, "Single-mode condition for silicon rib waveguides," Journal of Lightwave Technology, vol. 20, pp. 1851-1855, 2002.
[13] S.H.Hsu, "A 5μm-thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber," IEEE Photonics Technology Letters, vol. 20, pp. 1003-1005, 2008.
[14] BeamPROP, Rsoft Design Group,Inc.
[15] Heiblum, M., Harris, J., "Analysis of curved optical waveguides by conformal transformation," IEEE Quantum Electronics, vol.11, no.2, pp. 75- 83, Feb 1975.
[16] M. D. Feit and J. A. Fleck, Jr., "Light propagation in graded-index optical fibers," Appl. Opt. 17, 3990-3998, 1978.
[17] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford, 2007.
[18] A. H. Gnauck, P. J. Winzer, and , "Optical Phase-Shift-Keyed Transmission," J. Lightwave Technol. 23, 115-130, 2005.
[19] Xu, C.; Xiang Liu; Xing Wei; , "Differential phase-shift keying for high spectral efficiency optical transmissions," IEEE Selected Topics in Quantum Electronics, vol.10, no.2, pp. 281- 293, March-April 2004.
[20] 黃信誠, DPSK光解調變器特性探討, 碩士論文, 台灣科技大學, 民國100 年.
[21] 黃浚銘, 相容互補金屬氧化半導體製程用於矽光電元件技術之研發, 碩士論文, 台灣科技大學, 民國97 年.
[22] 楊金成、吳政三、柯富祥,”TEL MK-8自動化阻劑旋轉塗佈及顯影系統介紹”,國家奈米元件實驗室-奈米通訊期刊第八卷第一期,pp.41-49.
[23] S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, "Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases, " J. Vac. Sci. Technol. Vol. 15(3), pp. 640-645, May/Jun 1997.
[24] Rob Legtenberg, Henri Jansen, Meint de Boer, and Miko Elwenspoek, "Anisotrapic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures, " J. Electrochem. Sac, Vol. 142, No. 6, June 1995.
[25] T. Miyamoto, "Numerical analysis of a rib optical waveguide with trapezoidal cross section," Optics Communications, vol. 34, pp. 35-38, 1980.
[26] W. Qin and D. Fang, "Modal analysis of a rib optical waveguide with trapezoidal cross section by variable transformed Galerkin method," in Computational Electromagnetics and Its Applications, 1999. Proceedings. (ICCEA '99) 1999 International Conference on, 1999, pp. 82-85.
[27] D. F. Clark and I. Dunlop, "Method for analysing trapezoidal optical waveguides by an equivalent rectangular rib waveguide," Electronics Letters, vol. 24, pp. 1414-1415, 1988.
[28] P. M. Pelosi, P. Vandenbulcke, C. D. W. Wilkinson, and R. M. De La Rue, "Propagation characteristics of trapezoidal cross-section ridge optical waveguides: an experimental and theoretical investigation," Appl. Opt., vol. 17, pp. 1187-1193, 1978.