簡易檢索 / 詳目顯示

研究生: 張統凱
TONG-KAI JHANG
論文名稱: 四輪獨立驅動電動車之電子煞車與速度控制
Electric Brake and Speed Control of Four Wheels Independent Drive Electric Vehicle
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 陳柏全
Bo-Chiuan Chen
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 四輪獨立驅動電動車電子煞車循跡防滑控制系統
外文關鍵詞: four-wheel drive, electric car, electric brake, traction control system
相關次數: 點閱:210下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以一輛四輪獨立驅動電動車為對象,使用FPGA作為整車核心控制器,規劃設計馬達驅動器、行車控制、回授感測之模組,並探討四輪獨立驅動電動車的性能問題。分別使用具自調性能的滑動模糊控制(FSMC)與基於函數近似法的適應控制(FAT-base AC) 兩種不須建立數學方程之控制器,對四輪輪轂馬達的速度進行控制,並比較兩者性能上之差異。在定速巡航行駛時,可切換為前輪驅動或後輪驅動,達到節能之效果。煞車部分,採用馬達驅動器控制之電子煞車,讓車輛安全停止,並搭配應用在速度追蹤上,以改善實際車速大於目標車速之情形。此外當車輛行駛至低摩擦路面時,控制器會根據參考車速及車輪轉速,計算兩者速度間的差值及誤差的變化量,適當給予車輪之命令,並搭配電子煞車抑制轉速上升,避免能源的浪費,並使行駛的車輛保持安全及操控性。


In this research, we design a four-wheel drive electric vehicle is instructed with FPGA control kernel for the whole vehicle system. The vehicle control system includes motor driver, driving controller and sensor feedback module. The performance of the vehicle velocity control based on two kinds of intelligent control schemes is compared. They are self-adjusting fuzzy sliding mode control and functional approximation based adaptive control. For constant speed cruising, the motors driver mode can be changed to reduce the energy consumption. The vehicle deceleration is controlled by the electric brake of motor driver. This brake system can also be used in speed control for improving the tracking situation which the actual velocity faster than the target velocity. When vehicle is driving on the low friction road, the controller will calculate the velocity error and the error change of the vehicle speed with respect to command and provide on speed appropriate wheel speed. The electric brake can be used to suppress the increasing of the rotational speed for improving the safety or handling, and reducing conserve the energy consumption.

摘要...........................................................................I Abstract......................................................................II 誌謝..........................................................................IV 圖目錄........................................................................VII 表目錄..........................................................................X 第一章 緒論.....................................................................1 1.1 研究動機與背景..............................................................1 1.2 文獻回顧...................................................................2 1.3 論文架構...................................................................5 第二章 車輛模型與硬體架構.........................................................6 2.1 車輛模型...................................................................6 2.1.1 全車七自由度模型...........................................................7 2.1.2 高速轉向三自由度模型........................................................9 2.1.3 Ackerman幾何模型........................................................11 2.1.4 永磁無刷直流馬達模型.......................................................14 2.2 車輛機構設計...............................................................18 2.2.1 車架結構................................................................18 2.2.2 動力系統................................................................19 2.2.3 懸吊系統組件.............................................................22 2.2.4 轉向機構................................................................24 2.3 行車控制系統...............................................................26 2.3.1 控制器..................................................................27 2.3.2 回授感測器...............................................................28 2.3.3 類比轉數位模組............................................................30 2.4 線控轉向系統...............................................................31 第三章 系統控制理論.............................................................34 3.1 模糊滑動模式控制器(Fuzzy Sliding Mode Control)..............................34 3.1.1 模糊控制器(Fuzzy Control)................................................34 3.1.2 滑動模式控制(Sliding Mode Control).......................................37 3.1.3 滑動模式控制器結合模糊控制器................................................42 3.2 函數近似適應性控制(FATAC)...................................................44 3.2.1 函數近似法(Functional Approximation Technique)...........................44 3.2.2 函數近似法結合適應控制器...................................................47 第四章 數位控制器設計...........................................................51 4.1 行車控制器設計.............................................................51 4.1.1 行車控制流程.............................................................52 4.1.2 數位濾波器設計............................................................53 4.1.3 周邊裝置通訊介面..........................................................54 4.2 馬達驅動器控制架構..........................................................56 4.2.1 驅動器架構...............................................................56 4.2.2 橋式驅動電路.............................................................58 4.3 電池電量量測...............................................................62 4.4 電子差速器.................................................................63 4.5 車輛行駛軌跡...............................................................67 4.6 循跡防滑系統...............................................................70 第五章 實驗結果與討論............................................................72 5.1 四輪速度控制響應............................................................72 5.1.1 FATAC控制器之實驗結果.....................................................72 5.1.2 FSMC控制器之實驗結果......................................................89 5.2 電子煞車..................................................................98 5.2.1 電子煞車之煞車距離實驗結果..................................................98 5.2.2 電子煞車之定速追蹤實驗結果..................................................99 5.3 適時四輪驅動實驗...........................................................101 5.4 循跡控制系統..............................................................106 第六章 結論與未來展望...........................................................109 6.1 結論.....................................................................109 6.2 未來展望.................................................................110 參考文獻......................................................................111

[1]黃隆洲,台灣電動車產業發展現況與兩岸合作契機,第六屆兩岸經貿文化論壇,2010。
[2]C. C. Chan and K. T. Chau, “Modern Electric Vehicle Technology,” Oxford, New York, 2001.
[3]薛乃綺,電動車─為傳統馬達產業創造另一片藍海,財團法人金屬工業研究發展中心第61期金屬前鋒報,高雄市(2009)。
[4]J. G. W. West, “DC, induction, reluctance and PM motors for electric vehicles,” IEEE Power Engineering Journal, Vol. 8, pp. 77-88, April 1994.
[5]Y. Takano, M. Takeno, T. Imakawa, A. Chiba, N. Hoshi, M. Takemoto, and S. Ogasawara, “Torque Density and Efficiency Improvements of a Switched Reluctance Motor Without Rare Earth Material for Hybrid Vehicles,” IEEE Transactions On Industry Applications, All-Wheel Driving Using Independent Torque Control Of Each Wheel, No. 3, May/June 2011.
[6]Y. Hori, “Future Vehicle driven by Electricity and Control -Research on Four Wheel Motored "UOT Electric electric March II ",” IEEE Transactions on Industrial Electronics, Vol. 51, No.5, pp. 954 – 962, Oct. 2004
[7]S. J. Hallowell and L. R. Ray, “All-Wheel Driving Using Independent Torque Control Of Each Wheel,” IEEE Proceedings of the American Control Conference, Vol. 3, pp. 2590-2595, 2003.
[8]J. G. Song and P. P. Xu, “The research of stability performance of 4WD vehicles basing on electric wheels torque control,” IEEE International Conference on Mechatronics and Automation, Beijing, China, pp. 354-358, 2011.
[9]Y. J. Cho, B. S. Jun, S. C. Sin, T. K. Lee, and C. Y. Won, “Synchronous Control Method for Four In-wheel Motors of Electric Vehicle (EV),” IEEE International Conference on Electrical Machines and Systems, Incheon, China, pp. 2036-2039, 10-13 Oct. 2010.
[10]D. Lu, J. Li, M. Ouyang, and J. Gu, “Research on Hub Motor Control of Four-wheel Drive Electric Vehicle,” IEEE Vehicle Power and Propulsion Conference, Chicago, America, pp. 1-9 , Sept. 2011.
[11]Q. Gu and X. Cheng, “Study on Optimal Slip Ratio Identification and Traction Control for Electric Vehicle,” IEEE International Conference on Mechatronic Science, Electric Engineering and Computer, Jilin, China, pp. 738-742, 2011.
[12]L. Chu, L. B. Chao, Z. Wu, and T. B. Wu, “Research on Traction Slip Control Algorithm for Parallel Hybrid Cars,” IEEE International Conference on Mechatronic Science, Electric Engineering and Computer, Jilin, China, pp. 1598-1601, 2011.
[13]H. Fujimoto, K. Fujii, and N. Takahashi, “Traction and Yaw-rate Control of Electric Vehicle with Slip-ratio and Cornering Stiffness Estimation,” IEEE American Control Conference, New York, America, pp. 5742-5747, 2007.
[14]Y. Hori, Y. Toyoda, and Y. Tsuruoka, “Traction control of electric vehicle: basic experimental results using the test "EV UOT electric march",” IEEE Transactions on Industry Applications, Vol.34, No.5, 1998.
[15]J. H. Park and C.Y. Kim, “Wheel slip control in traction system for vehiclestability,” Vehicle System Dynamics, Vol.4, No.31, pp.263-278, 1999.
[16]B. Berman, “All Solid-State Method for Implementing a Traction Drive Control,” IEEE Transactions on Industry Applications, Vol.8, No.2, pp.195-202, 1972.
[17]A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, “Modeling, analysis, and neural network control of an EV electrical differential,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2286-2294, June 2008.
[18]L. Zhai and S. Dong, “Electronic Differential Speed Steering Control for Four In-wheel Motors Independent Drive Vehicle,” IEEE WCICA, Taipei, Taiwan, pp. 780-783, 2011.
[19]F. J. Perez-Pinal, I. Cervantes, and A. Emadi, “Stability of an electric differential for traction applications,” IEEE Transactions on Vehicular Technology, Vol. 58, No 7, pp. 3224-3233, 2009.
[20]S. Gair, A. Cruden, and J. McDonald, “Electronic Differential with Sliding Mode Controller for a Direct Wheel Drive Electric Vehicle,” IEEE International Conference on Mechatronics, pp. 98-103, 2004.
[21]G. Tao, Z. Ma, L. Zhou, and L. Li, “A novel driving and control system for direct-wheel-driven electric vehicle,” IEEE Transactions on Magnetics, Vol.41, No 1, pp. 497-500, 2005.
[22]S. You, H. Lee, D. Lee, H. Mok, Y. Lee, and S. Han, “Speed ratio control for electronic differentials,” IEEE Electronics Letters, Vol. 47, No. 16, pp. 933-934, August 2011.
[23]T. Buente and D. Odenthald, “Advantages of active steering for vehicle Dynamics Control,” In Proc. 32nd International Symposium on Automotive Technology and Automation, pp.263-270, 1999.
[24]J. S. Lee, Y. J. Ryoo, Y. C. Lim, and P. Freere, “A Neural Network Model of Electric Differential System,” IEEE Industrial Electronics Society, Vol.1, pp. 83-88, 2000.
[25]B. C. Chen, C. C. Yu, W. S. Lee, and W. F. Hsu, “Design of Electric Differential System for Three-wheeled Electric Welfare Vehicles with Driver-in-the-loop Verification,” IEEE Transactions on Vehicular Technology, Vol.56, No.4, pp. 1498-1505, 2007.
[26]Y. Zhou, S. Li, X. Zhou, and Z. Fang, “The Control Strategy of Electronic Differential for EV with Four In-wheel Motors,” IEEE Control and Decision Conference, Xuzhou, China, pp. 4190-4195, 2010.
[27]M. R. Stone and M. A. Demetriou, “Modeling and simulation of vehicle ride and handling performance,” Proceedings of IEEE Intemational Symposium on Intelligent Control, Rio Patras, Greece, pp. 85-90, 17-19 July 2000.
[28]B. J. Olson, S. W. Shaw, and G. Stepan, “Nonlinear Dynamicsof Vehicle Traction,” Vehicle System Dynamics, Vol. 40, No.6, pp.377-399, 2003.
[29]J. H. Park and Y. S. Kim, “Decentralized Variable Structure Control for Active Suspensions Based on a Full-Car Model,” Proceedings of IEEE International Conference on Control Applications, Trieste, Italy, pp.1-4, 1998.
[30]C. Kim and P. I. Ro, “An Accurate Full Car Ride Model Using Model Reducing Techniques,” ASME Journal of Mechanical Design, Vol.124, December 2002.
[31]J. Kim and H. Kim, “Electric Vehicle Yaw Rate Control using Independent In-Wheel Motor,” IEEE Power Conversion Conference, Nagoya, japan, pp. 705-710 2-5,2007.
[32]D. Kim, S. Hwang, and H. Kim, “Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control,” IEEE Trans. On Vehicular Technology, Vol.57, No. 2, March 2008.
[33]F. Li, J. Wang, and Z. Liu, “On the Vehicle Stability Control for Electric Vehicle Based on Control Allocation,” IEEE Vehicle Power and Propulsion Conference, Harbin, China, pp. 1-6, 2008.
[34]F. Li, J. Wang, and Z. Liu, “Motor Torque Based Vehicle Stability Control for Four-wheel-drive Electric Vehicle,” IEEE Vehicle Power and Propulsion Conference, Dearborn, America, pp. 1596-1601, 2009.
[35]T. D. Gillespie, “Fundamentals of Vehicle Dynamics,” SAE, USA, 1994.
[36]黃靖雄,汽車原理,正工出版社,民國八十二年。
[37]V. I. Utkin, “Variable structure system with sliding modes,” IEEE Trans. Automatic Control, Vol.AC-22, No.2, pp. 212-222, April 1977.
[38]J.-J. E. Slotine,“Tracking Control of Nonlinear Systems using Sliding Surfaces,”Doctoral Dissertation, Massachusetts Institute of Technology, 1983.
[39]J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.
[40]F. B. Hildebrand, Advanced Calculus for Applications. Englewood Cliffs, NJ: Prentice Hall, 1976.
[41]J. J. E. Slotine and W. Li, “Applied nonlinear control,” Prentice Hall, pp.122-125, 1991
[42]A. C. Huang and Y. C. Chen, “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE. Trans. On Control Systems Technology, Vol. 12, No. 5, 2004.
[43]The I2C-bus specification, Vers. 2.1, Philips Semiconductors, 2000.
[44]Z. W. Hu, “I2C Protocol Design for Reusability,” IEEE Third International Symposium on Information Processing, 2010.
[45]S. Sedra and C. S. Kenneth, “Microelectronic Circuits,” Oxford, 2002.
[46]M. Ceraolo and G. Pede, “ Techniques for Estimating the Residual Range of an Electric Vehicle,” IEEE Trans. on vehicular Technology, Vol. 50, No. 1, pp. 109-115, Jan. 2001.
[47]陳怡萍,鉛酸與鋰離子蓄電池之電量估測,碩士論文,國立中山大學,電機工程學系,2007。
[48]T. H. Li and S. J. Chang, “Autonomous Fuzzy Parking Control of a Car-Like Mobile Robot,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.33, No. 4, pp.451-465, July 2003.
[49]I. E. Paromtchik and C. Laugier, “Autonomous parallel parking of a nonholonomic vehicle,” Proceedings of IEEE Intelligent Vehicles Symposium, pp.13-18, 19-20 Sep 1996.
[50]K. Lee, D. Kim, W. Chung, H. W. Chang, and P. Yoon, “Car parking control using a trajectory tracking controller,” SICE-ICASE International Joint Conference, Busan, Korea, pp.18-31, Oct. 2006.
[51]N. Mutoh and H. Yahagi, “Methods to Control Wheel Locks and Wheel Spins for Electric Vehicles with the Structure Having Independently Driven Front and Rear Wheels,” IEEE Industry Applications Conference, Tampa, America, pp.1598-1605, 2006.
[52]劉軒, “具立體視覺之移動式仿人型機器人,” 碩士論文, 國立台灣科技大學機械工程學系, 2010
[53]Y. Zhao, Y. Zhang, and Y. Zhao, “Stability Control System for Four-In-Wheel -Motor Drive Electric Vehicle,” IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, pp.1171-175, 2009.
[54]J. Nunney, “Light and Heavy Vehicle Technology,” Fourth Edition, pp. 450, 2006.

QR CODE