簡易檢索 / 詳目顯示

研究生: Nattapat Kongsuwan
Nattapat Kongsuwan
論文名稱: 使用集成神經網路於具多資料源協同過濾之推薦系統
Collaborative Filtering with Multiple Data Sources using Ensemble Neural Networks for Recommender System
指導教授: 郭人介
Ren-Jieh Kuo
口試委員: 羅士哲
Shih-Che Lo
許嘉裕
Chia-Yu Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: 推薦系統協同過濾粒子群最佳化演算法單詞嵌入圖像特徵擷取集成神經網路
外文關鍵詞: Recommender system, Collaborative filtering, Particle swarm optimization algorithm, Word embedding, Image feature extraction, Ensemble neural networks
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位時代的演進、資訊技術的發展及人們生活方式的改變,許多線上平台已經陸續出現,以滿足現代的便利需求。這些平台包括串流服務,如Netflix和Disney+,以及電子商務平台,如Amazon、PC Home和Shopee。儘管有了這些進步,但使用者數量和產品種類呈指數級增長,導致了資訊量過大,迫使供應商和消費者將過多的時間和資源投入到決策中。為了解決此問題,推薦系統已經成為一個重要的解決方案,幫助使用者識別合適的產品,並協助平台實現目標市場行銷,進而節省成本。系統主要依靠消費者對於產品的評分及評論來產生預測。然而,產品和消費者數量的大幅增加帶來了挑戰,如數據的稀疏性。除此之外,納入當代消費者行為數據是一個必須解決的問題。
    為了解決上述挑戰,本研究提出了一個集成神經網絡的應用方法來整合來自不同數據的偏好預測。粒子群最佳化演算法(Particle Swarm Optimization Algorithm; PSO) 被用來找出評分的最佳的相似性,緩解因數據稀少而產生的數據失真問題。而Bidirectional Encoder Representations from Transformers (BERT) 模型被用來從消費者評論中提取特徵,而InceptionV3則被用來從圖片數據中提取圖像特徵。藉由品項為基礎的協同過慮的實作,用來估計每筆數據的使用者偏好。
    根據實驗結果,證實了所提出的整合數據的方法可以提高推薦系統的成效。藉由在六個Amazon數據集與基準方法相比,所提方法在其中五個方面表現優異。除此之外,該研究還發現「評論數據」和「圖片數據」的組合是最有效的數據組合。


    As the digital age progresses, with information technology evolving and people's lifestyles changing, numerous online platforms have surfaced to meet modern convenience needs. These include streaming services such as Netflix and Disney+, and e-commerce platforms like Amazon, PC Home, and Shopee. Despite these advancements, the exponential growth in user base and product variety has led to an overwhelming amount of information, compelling both vendors and consumers to devote excessive time and resources to decision-making. In response, recommender systems have emerged as a crucial solution, aiding users in identifying suitable products and assisting platforms in achieving targeted marketing, thereby saving costs. These systems primarily rely on ratings or interactions between consumers and products to generate predictions. Nevertheless, the considerable expansion in the number of products and consumers has presented challenges, such as data sparsity. Additionally, the incorporation of contemporary consumer behavior data is an imperative issue to address.
    To address the challenges outlined, this study proposes the application of an ensemble neural networks method to integrate preference predictions from diverse data sources. Particle Swarm Optimization is employed to identify optimal item similarity from ratings, mitigating issues of data distortion arising from data sparsity. The Bidirectional Encoder Representations from Transfomer model is utilized to extract features from consumer messages, while InceptionV3 is applied to extract image features from pictorial data. Furthermore, item-based collaborative filtering is implemented to estimate user preferences for each data source.
    Based on the experimental findings, it is substantiated that the proposed method of integrating data sources can enhance the performance of the recommender system. In comparison to the benchmark methods applied across six Amazon datasets, the proposed approach outperforms in five of them. Moreover, the study also underscores that the combination of review data and picture data is the most effective data combination.

    摘要 I ABSTRACT II Table of Contents III List of Tables V List of Figures VII Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 2 1.3 Research Scope and Constraints 2 1.4 Thesis Organization 2 Chapter 2 Literature Review 4 2.1 Recommender System 4 2.1.1 Collaborative filtering 5 2.1.2 Textual-based recommendation 7 2.1.3 Image-based recommendation 7 2.1.4 Recommender systems with multiple data sources 8 2.2 Natural Language Processing 9 2.3 Convolutional Neural Networks 10 2.4 Metaheuristics 12 2.4.1 Genetic Algorithm (GA) 12 2.4.2 Particle swarm optimization algorithm (PSO) 14 2.5 Ensemble Learning 15 Chapter 3 Methodology 17 3.1 Research Framework 18 3.2 Rating Data 19 3.3 Textual Data 20 3.4 Picture Data 23 3.5 Ensemble 24 Chapter 4 Experimental Results 27 4.1 Datasets 27 4.2 Data Preprocessing 28 4.3 Performance Measurement 28 4.4 Parameter Setting 28 4.5 Experiment Results 31 4.5.1 Analysis of different data sources 31 4.5.2 Analysis of the state-of-art methods 38 4.5.3 Analysis of different feature extraction methods 41 4.5.4 Analysis of different ensemble methods 44 4.6 Complexity Analysis 47 Chapter 5 Conclusions and Future Research 49 5.1 Conclusions 49 5.2 Contributions 49 5.3 Future Research 50 REFERENCES 51 Appendix A. Shapiro-Wilk Test Results 56 Appendix B. BERT Training Datasets 59 Appendix C. Comparison of Parameter for Ensemble Models 61 C1 Data selection percentage 61 C2 Termination criteria 63

    Abdollahi, J., Nouri-Moghaddam, B., & Ghazanfari, M. (2021). Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases). ArXiv:2103.08182.
    Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
    Alamdari, M. P., Navimipour, N. J., Hosseinzadeh, M., Safaei, A. A., & Darwesh, A. (2022). Image-based Product Recommendation Method for E-commerce Applications Using Convolutional Neural Networks. Acta Informatica Pragensia, 11(1), 15-35.
    Alhijawi, B., & Kilani, Y. (2016). Using genetic algorithms for measuring the similarity values between users in collaborative filtering recommender systems. 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 1-6.
    Aljunid, M. F., & Dh, M. (2020). An Efficient Deep Learning Approach for Collaborative Filtering Recommender System. Procedia Computer Science, 171, 829–836.
    Angadi, A., Keerthi Gorripati, S., Rachapudi, V., Krishna Kuppili, Y., & Dileep, P. (2021). Image-based Content Recommendation System with CNN. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 1260-1264.
    Asiroglu, B., Atalay, M. I., Balkaya, A., Tuzunkan, E., Dagtekin, M., & Ensari, T. (2019). Smart Clothing Recommendation System with Deep Learning. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1-4.
    Betru, B., Onana, C., & Batchakui, B. (2017). Deep Learning Methods on Recommender System: A Survey of State-of-the-art. International Journal of Computer Applications, 162(10), 975–8887.
    Bokde, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix Factorization Model in Collaborative Filtering Algorithms: A Survey. Procedia Computer Science, 49, 136-146.
    Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
    Catherine, R., & Cohen, W. (2017). TransNets: Learning to Transform for Recommendation. Proceedings of the 11th ACM Conference on Recommender Systems, 288–296.
    Chen, R., Hua, Q., Chang, Y.-S., Wang, B., Zhang, L., & Kong, X. (2018). A Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks. IEEE Access, 6, 64301–64320.
    Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the
    22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
    Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., & Semet, F. (2002). A guide to vehicle routing heuristics. Journal of the Operation Research Society, 53(5), 512–522.
    Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. Computation and Language, arXiv preprint arXiv:1810.04805.
    Dezfouli, P. A. B., Momtazi, S., & Dehghan, M. (2021). Deep neural review text interaction for recommendation systems. Applied Soft Computing, 100, 106985.
    Dudekula, K. V., Syed, H., Basha, M. I. M., Swamykan, S. I., Kasaraneni, P. P., Kumar, Y. V. P., Flah, A., & Azar, A. T. (2023). Convolutional Neural Network-Based Personalized Program Recommendation System for Smart Television Users. Sustainability, 15(3), 2206.
    Du, Y., Wang, L., Peng, Z., & Guo, W. (2021). Review-based hierarchical attention cooperative neural networks for recommendation. Neurocomputing, 447, 38–47.
    Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Sixth International Symposium on Micro Machine and Human Science, 39-43.
    Elsayed, S., Brinkmeyer, L., & Schmidt-Thieme, L. (2022). End-to-End Image-Based Fashion Recommendation. ArXiv:2205.02923.
    Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    Ghasemi, N., & Momtazi, S. (2021). Neural Text Similarity of User Reviews for Improving Collaborative Filtering Recommender Systems. Electronic Commerce Research and Applications, 45, 101019.
    Han, W., Nan, L., Su, M., Chen, Y., Li, R., & Zhang, X. (2019). Research on the Prediction Method of Centrifugal Pump Performance Based on a Double Hidden Layer BP Neural Network. Energies, 12(14), 2709.
    He, R., & Mcauley, J. (2016). Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering. Proceeding of the 25th International Conference on
    World Wide Web, 507-517.
    Hiriyannaiah, S., Siddesh, G.M., & Srinivasa, K.G. (2022). Deep Visual Ensemble Similarity (DVESM) Approach for Visually Aware Recommendation and Search in Smart Community.
    Journal of King Saud University - Computer and Information Sciences, 34(6), 2562-2573.
    Holland, J. H. (1992). Genetic Algorithm, Scientific American, 267(1), 66-73.
    Hu, R., Dou, W., & Liu, J. (2014). ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application. IEEE Transactions on Emerging Topics in Computing, 2(3), 302–313.
    Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications, 28, 94–101.
    Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273.
    Kim, D., Park, C., Oh, J., Lee, S., & Yu, H. (2016). Convolutional matrix factorization for document context-aware recommendation. Proceedings of the 10th ACM conference on recommender systems, 233-240.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
    Kuo, R. J., & Li, S. S. (2023). Applying particle swarm optimization algorithm-based collaborative filtering recommender system considering rating and review. Applied Soft Computing, 135(c), 110038.
    Lauriola, I., Lavelli, A., & Aiolli, F. (2022). An introduction to Deep Learning in Natural Language Processing: Models, techniques, and tools. Neurocomputing, 470, 443- 456.
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
    Liu, H., Wang, Y., Peng, Q., Wu, F., Gan, L., Pan, L., & Jiao, P. (2020). Hybrid neural recommendation with joint deep representation learning of ratings and reviews. Neurocomputing, 374, 77–85.
    Liu, J., & Wu, C. (2017). Deep Learning Based Recommendation: A Survey. Information Science and Applications 2017, 424, 451–458.
    Luo, Y., Tang, L. (Rebecca), Kim, E., & Wang, X. (2020). Finding the reviews on yelp that actually matter to me: Innovative approach of improving recommender systems. International Journal of Hospitality Management, 91, 102697.
    McAuley, J., Leskovec, J. (2013). Hidden factors and hidden topics: Understanding ratings dimensions with review text. Proceeding of the 7th ACM Conference on Recommender Systems, 165-172.
    Mienye, I. D., & Sun, Y. (2022). A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access, 10, 99129–99149.
    Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 46 representations in vector space. Computation and Language, arXiv preprint arXiv:1301.3781.
    Patel, K., & Patel, H. B. (2020). A state-of-the-art survey on recommendation system and prospective extensions. Computers and Electronics in Agriculture, 178, 105779.
    Peng, Q., Weir, D., & Weeds, J. (2021). Structure-aware Sentence Encoder in BERT-Based Siamese Network. Proceeding of the 6th Workshop on Representation Learning for NLP, 57–63.
    Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: global vectors for word representation. Proceeding of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532-1543.
    Pintelas, P., & Livieris, I. E. (2020). Special Issue on Ensemble Learning and Applications. Algorithms, 13(6), 140.
    Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems: Introduction and Challenges. Recommender Systems Handbook, 1–34.
    Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for IDF. Journal of Documentation, 60(5), 503-520.
    Salakhutdinov, R., & Mnih, A. (2007). Probabilistic matrix factorization. Proceeding of the 20th International Conference on Neural Information Proceeding Systems, 1257-1264.
    Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted Boltzmann machines for collaborative filtering. Proceedings of the 24th International Conference on Machine Learning, 791-798.
    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the 2018 IEEE Conference on Computer
    Vision and Pattern Recognition, 4510-4520.
    Sarwar, B., Karypis, G., Konstan, J., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285-295.
    Seo, Y. D., Kim, Y. G., Lee, E., & Kim, H. (2021). Group recommender system based on genrepreference focusing on reducing the clustering cost. Expert Systems with Applications, 183, 115396.
    Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.
    Singh, N. K., & Kumar, A. (2022). Image Based Recommender System using Transfer Learning. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), 1-4.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. 2016 IEEE conference on computer vision and pattern recognition, 2818-2826.
    Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. arXiv:2104.00298.
    Uzair, M., & Jamil, N. (2020). Effects of Hidden Layers on the Efficiency of Neural networks. 2020 IEEE 23rd International Multitopic Conference (INMIC), 1-6.
    Wang, H., Shi, X., & Yeung, D. Y. (2015). Relational Stacked Denoising Autoencoder for Tag Recommendation. Proceedings of the 19th AAAI Conference on Artificial Intelligence, 3052-3058.
    Wang, Z., Xia, H., Chen, S., & Chun, G. (2021). Joint representation learning with ratings and reviews for recommendation. Neurocomputing, 425, 181–190.
    Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B., & Luo, X. (2019). A Context-Aware User-Item Representation Learning for Item Recommendation. ACM Transactions on Information Systems, 37(2), 1–29.
    Yang, L., Wang, S. H., & Zhang, Y. D. (2022). EDNC: Ensemble Deep Neural Network for COVID-19 Recognition. Tomography, 8(2), 869–890.
    Zhang, Y., Liu, Z., & Sang, C. (2021). Unifying paragraph embeddings and neural collaborative filtering for hybrid recommendation. Applied Soft Computing, 106, 107345.
    Zheng, L., Noroozi, V., & Yu, P. S. (2017). Joint Deep Modeling of Users and Items Using Reviews for Recommendation. Proceedings of the 10th ACM International Conference on Web Search and Data Mining, 425-434.

    無法下載圖示 全文公開日期 2028/06/27 (校內網路)
    全文公開日期 2028/06/27 (校外網路)
    全文公開日期 2028/06/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE