簡易檢索 / 詳目顯示

研究生: 韓忠威
Alexander Alvin Handojono
論文名稱: 富鎳單晶層狀陰極上的 LiNbO3 濕式原子層沉積鍍層
A wet-ALD (Atomic Layer Deposition) derived LiNbO3 coating on Single Crystal Nickel-Rich Layered Cathode
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 蘇威年
Nien Su Wei
吳溪煌
She Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 122
中文關鍵詞: 富鎳層狀正極材料鈮酸鋰表麵包覆濕法原子層沉積法熱穩定性電導率
外文關鍵詞: Nickel-rich layered cathode material, Lithium niobium oxide, Surface Coating, Wet-ALD Coating method, Thermal Stability, Conductivity
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
富鎳層狀正極材料因具備約 220 mAh/g 的高比電容而備受期待。然而它
的商業化受到一些限制的阻礙,包括熱穩定性低、容量保持率低、電極與電解
質發副反應以及首次循環容量損失。為了增加富鎳層狀陰極材料的真實電位,
最簡單的方法之一是增加陽極和陰極電極之間的電位差。隨著鎳含量的提升,
晶間微裂紋的產生越發嚴重,最終使得性能衰退。
因此,本研究使用單晶 Li(Ni0.83Mn0.06Co0.11)O2 來克服和降低在高電壓
(4.5V)循環時晶間微裂紋的發生。 同時,LiNbO3 的濕法 ALD 塗層將克服其
他問題,如首次容量損失、副反應、熱穩定性和低容量保持率。它作為單晶
Li(Ni0.83Mn0.06Co0.11)O2 表面的納米導電塗層。 本研究著重於兩種不同的煅燒溫
度來形成塗層。 結果表明,較高的煅燒溫度會導致較高的結晶塗層
( SCNMC@0.7LNO-700 ) , 較 低 的 煅 燒 溫 度 會 導 致 非 晶 塗 層
(SCNMC@0.7LNO-500)。 兩者都可以在高電壓(4.5V)下實現更好的容量
保持,而較高結晶度的 LiNbO3提供了更好的熱穩定性,並使得高溫下容量保持
率也有所提升。通過濕式 ALD 塗層技術塗覆的導電塗層適用於富鎳層狀正極,
可用作為開發新一代商業 LIB 正極材料的解決方案。


ABSTRACT
Due to their high specific capacitance of roughly ~220 mAh/g, nickel-rich
layered cathode materials are eagerly anticipated. Its commercialization has been
hampered by a few limitations, including low thermal stability, low capacity retention,
a tendency for side reactions with electrolytes, and first cycle capacity loss. In order to
increase the true potential of the nickel rich layered cathode material, one of the
simplest ways is to increase the potential difference between anode and cathode
electrode. However, the higher the nickel content, the more severe the inter-granular
micro crack occurs, and the worse the performance.
Therefore, Single Crystalline Li(Ni0.83Mn0.06Co0.11)O2 is used in this study to
overcome and reduce the potential of the inter—granular microcrack upon cycling at
high voltage (4.5V). Furthermore, other problems such as first capacity loss, side
reaction, thermal stability and low capacity retention will be overcome by wet-ALD
coating of LiNbO3. It acts as a nano-conductive coating layer on the surface of the
Single Crystalline Li(Ni0.83Mn0.06Co0.11)O2. This study focuses on the two different
calcination temperature to form the coating layer. It results that higher calcinations
temperature will lead to higher crystalline coating layer (SCNMC@ 0.7LNO-700) and
lower calcinations temperature leads to amorphous coating layer (SCNMC@
0.7LNO-500). Both can achieve better capacity retention at high voltage (4.5V). The
higher crystalline LiNbO3 offers better thermal stability of cathode in which the
capacity retention is enhanced at elevated temperature. This conductive coating that
coated by wet-ALD coating method is suitable for Nickel rich layered cathode and
can be used as the solution to develop better cathode material in commercial LIBs.

Table of Contents 中文摘要............................................................................................................................................i ABSTRACT......................................................................................................................................ii Acknowledgments............................................................................................................................iv Table of Contents.............................................................................................................................vi List of Figures..................................................................................................................................xi List of Tables ................................................................................................................................xvii List of Units and Abbreviations.....................................................................................................xix Chapter 1. Introduction ..................................................................................................................... 1 1.1. The World Energy Concern ................................................................................1 1.2. Energy Storage Technology................................................................................2 1.3. Lithium-Ion Battery (LIBs).................................................................................3 1.4. Lithium Metal Batteries......................................................................................4 1.5. Anode..................................................................................................................5 1.6. Cathode ...............................................................................................................6 1.6.1. Li(NixMnyCo1-x-y)O2 (NMC)........................................................................8 1.6.1. Single Crystalline Li(NixMnyCo1-x-y)O2 (SCNMC)...............................10 1.6.3. Intragranular Cracking as Major Cause of Capacity Fading .....................11 1.7. Separator ...........................................................................................................14 1.8. Electrolyte .........................................................................................................15 1.9. Surface Coating.................................................................................................15 1.9.1. Coating Technologies ................................................................................14 vii 1.9.2. Chemical Vapor Deposition (CVD)...........................................................16 1.9.3. Co-Precipitation .........................................................................................16 1.9.4. Atomic Layer Deposition (ALD)...............................................................17 1.9.5. Wet- Atomic Layer Deposition (ALD)......................................................17 1.9.6. Coating Materials.......................................................................................18 1.9.7. LiNbO3 Coating / Substitution...................................................................19 Chapter 2. Fundamentals of Lithium Ion Battery ........................................................................... 21 2.1. Working Principle of Lithium Metal Battery....................................................21 2.2. Challenges of Anode-free Lithium Metal Battery ............................................23 2.3. Motivations and Objectives of the Study..........................................................24 2.3.1. Motivations................................................................................................24 2.3.2. Objectives ..................................................................................................25 2.4. Roadmap of Surface Coating of Nickel Rich Cathode Materials Development ..................................................................................................................................26 Chapter 3 Experimental and Characterization ................................................................................ 29 3.1. Chemical and Reagents.....................................................................................29 3.2. Materials Preparation........................................................................................30 3.2.1. Preparation of Li-Nb-O Modified SC-NMC811........................................30 3.2.2. Cathode Electrode......................................................................................33 3.2.3. Anode Electrode.........................................................................................34 3.2.4. Electrolyte Preparation...............................................................................34 3.3. Electrochemical Measurements........................................................................35 viii 3.4. Cylic Voltametric and Impedance Measurements............................................36 3.5. Cathode Morphology Observation....................................................................37 3.6. Coating Surface Characterization .....................................................................38 3.6. Surface Characterization...................................................................................38 Chapter 4 Result and Discussion .................................................................................................... 40 4.1. LiNbO3 Coating on SCNMC (Aleees) by wet-ALD coating method - Part 1..40 4.1.1. Optimization ..............................................................................................40 4.1.1.1. Cathode Slurry Optimization ..............................................................40 4.1.1.2. LiNbO3 Concentration Optimization and SCNMC Surface area Effect ..........................................................................................................................43 4.1.2. Hydroxyl Functional Group Analysis by FTIR .........................................47 4.1.3. The Calcination Temperature Effect in Structural and Material Characterizations..................................................................................................44 4.1.3.1. Powder X-Ray Diffaction (XRD) Analysis ........................................48 4.1.3.2. Morpholgy and Element Distribution Analysis of the Secondary Particle Size in Scanning Electron Microscopy (SEM)...................................52 4.1.3.3. Level of Crystallinity of the Coating layer by High Resolution Transmission Electron Microscopy (HR-TEM) ..............................................54 4.1.3.4. X-ray Photoelectron Spectroscopy (XPS) Analysis in the Characterization of SCNMC cathode ..............................................................58 4.1.4. Calcination Temperature Effect on Cycling Electrochemical Performances ..............................................................................................................................60 ix 4.1.4.1. Cycling Performance at Low Current Density with 2 Different Electrolytes.......................................................................................................48 4.1.4.2. Cycling Performance with 0.5C Cycling and at Room Temperature .66 4.1.4.3. Cycling Performance with 0.5C Cycling and at 50oC Environment...68 4.1.4.4. Polarization and Overpotential Analysis by Cyclic Voltammetric .....70 4.1.4.5. Differential Capacity (dQ/dV) Analysis .............................................72 4.1.4.6. Impedance Analysis by Potentiostatic Electrochemical Impedance Spectroscopy (PEIS) ........................................................................................73 4.1.4.7. Morphology Analysis on Pristine Cathode and Coated Cathode after 100 cycles by FESEM-Cross Sectional and FIB-Cross Sectional ...................76 4.2. LiNbO3 Coating on SCNMC (Ubiq) by Wet-ALD Coating - Part 2................79 4.2.1. Experimental Section.................................................................................79 4.2.2. Morphology Analysis before and after wet-ALD coating .........................79 4.2.3. Electrochemical performance - First cycle, 0.5C Cycling, and Rate Capabilities ..........................................................................................................80 4.3. LiBO3 Coating on PNMC by Wet-ALD Coating .............................................82 4.3.1. Experimental Section.................................................................................82 4.3.2. Current Issues and Approaches..................................................................82 4.3.3. Element Distribution by FESEM-EDS-Mapping ......................................84 4.3.2. Electrochemical performance - First cycle, 0.5C Cycling, and Rate Capabilities ..........................................................................................................85 Chapter 5 Conclusions and Future Outlooks.................................................................................. 88 x 5.1. Conclusions.......................................................................................................88 5.2. Future Outlooks ................................................................................................89 Supporting Materials....................................................................................................................... 91 References....................................................................................................................................... 93

References
[1] Y. Lv et al., "A review of nickel-rich layered oxide cathodes: synthetic
strategies, structural characteristics, failure mechanism, improvement
approaches and prospects," (in English), Appl Energ, vol. 305, Jan 1 2022,
doi: ARTN 11784910.1016/j.apenergy.2021.117849.
[2] F. X. Xin et al., "Li-Nb-O Coating/Substitution Enhances the Electrochemical
Performance of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) Cathode," (in
English), Acs Appl Mater Inter, vol. 11, no. 38, pp. 34889-34894, Sep 25
2019, doi: 10.1021/acsami.9b09696.
[3] X. P. Yin et al., "Recent Progress in Advanced Organic Electrode Materials
for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and
Perspectives," (in English), Adv Funct Mater, vol. 30, no. 11, Mar 2020, doi:
ARTN 190844510.1002/adfm.201908445.
[4] X. Shen et al., "Advanced Electrode Materials in Lithium Batteries:
Retrospect and Prospect," (in English), Energy Mater Adv, vol. 2021, 2021,
doi: Artn 120532410.34133/2021/1205324.
[5] J. O. Besenhard and M. Winter, "Advances in battery technology:
Rechargeable magnesium batteries and novel negative-electrode materials for
lithium ion batteries," (in English), Chemphyschem, vol. 3, no. 2, pp. 155-+,
Feb 15 2002, doi: Doi 10.1002/1439-7641(20020215)3:2<155::AidCphc155>3.0.Co;2-S.
[6] H.-H. Ryu, B. Namkoong, J.-H. Kim, I. Belharouak, C. S. Yoon, and Y.-K.
Sun, "Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes,"
Acs Energy Lett, vol. 6, no. 8, pp. 2726-2734, 2021.
[7] Y. Lu, Y. D. Zhang, Q. Zhang, F. Y. Cheng, and J. Chen, "Recent advances in
Ni-rich layered oxide particle materials for lithium-ion batteries," (in English),
Particuology, vol. 53, pp. 1-11, Dec 2020, doi: 10.1016/j.partic.2020.09.004.
[8] P. Y. Guan et al., "Recent progress of surface coating on cathode materials for
high-performance lithium-ion batteries," (in English), J Energy Chem, vol. 43,
pp. 220-235, Apr 2020, doi: 10.1016/j.jechem.2019.08.022.
[9] H. Kim, D. Byun, W. Chang, H. G. Jung, and W. Choi, "A nano-LiNbO3
coating layer and diffusion-induced surface control towards high-performance
5 V spinel cathodes for rechargeable batteries," (in English), J Mater Chem A,
vol. 5, no. 47, pp. 25077-25089, Dec 21 2017, doi: 10.1039/c7ta07898f.
[10] T. Ohzuku and R. Brodd, "An overview of positive-electrode materials for
advanced lithium-ion batteries.," vol. 174, no. 2, 2007.
[11] S. Chikkanavar, D. Benardi , and L. Liu, "A Review of Blended Cathode
Materials for Use in Li-Ion Batteries," vol. 248, 2014.
[12] M. Yoshio, R. Brodd, and A. Kozawa, Lithium Ion Batteries. New York:
Springer, 2009.
[13] J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, and J. Wang,
"Anode‐free rechargeable lithium metal batteries.," vol. 26, no. 39, 2016.
[14] J.-G. Zhang, J. Qian, W. Xu, and Henderson, "Anode Free Rechargable
Battery," United States Patent US20160261000A1, 2014.
[15] K. Brandt, "Historical development of secondary lithium batteries.," Solid
State Ionics pp. 173-183, 1994.
94
[16] Y. Liang et al., "A review of rechargeable batteries for portable electronic
devices.," InfoMat, pp. 6-32, 2019.
[17] A. Manthiram, B. H. Song, and W. D. Li, "A perspective on nickel-rich
layered oxide cathodes for lithium-ion batteries," (in English), Energy Storage
Mater, vol. 6, pp. 125-139, Jan 2017, doi: 10.1016/j.ensm.2016.10.007.
[18] M. Fischer, M. Werber, and P. V. Schwartz, " Batteries: Higher energy
density than gasoline?." Energy Policy, pp. 2639-2641, 2009.
[19] J. Li et al., "Toward Low-Cost, High-Energy Density, and High-Power
Density Lithium-Ion Batteries," Jom, vol. 69, no. 9, pp. 1484-1489, 2017.
[20] L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li, and Y. Tang, "Highly
Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life
of Dual‐Ion Battery," Angewandte Chemie International Edition, vol. 59, no.
41, pp. 17924-17930, 2020.
[21] J. L. Shi et al., "High‐Capacity Cathode Material with High Voltage for
Li‐Ion Batteries," Advanced Materials, vol. 30, no. 9, 2018.
[22] D. Lin, Y. Liu, and Y. Cui, "Reviving the Lithium Metal Anode for HighEnergy Density Battery," vol. 27, 2016.
[23] W. Xu et al., "Lithium metal anodes for rechargeable batteries.," vol. 7, 2014.
[24] J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine, "High-performance anode
materials for rechargeable lithium-ion batteries.," Electrochemical Energy
Reviews, pp. 35-53, 2018.
[25] Y. Liu and Y. F. Yang, "Recent Progress of TiO2-Based Anodes for Li Ion
Batteries," (in English), J Nanomater, vol. 2016, 2016, doi: Artn
812365210.1155/2016/8123652.
[26] M. Osiak, H. Geaney, E. Armstrong, and C. O'Dwyer, "Structuring materials
for lithium-ion batteries: advancements in nanomaterial structure,
composition, and defined assembly on cell performance," J Mater Chem A,
vol. 2, no. 25, pp. 9433-9460, 2014.
[27] U. Kasavajjula, C. S. Wang, and A. J. Appleby, "Nano- and bulk-siliconbased insertion anodes for lithium-ion secondary cells," (in English), J Power
Sources, vol. 163, no. 2, pp. 1003-1039, Jan 1 2007, doi:
10.1016/j.jpowsour.2006.09.084.
[28] Z. X. Chen, Y. L. Cao, J. F. Qian, X. P. Ai, and H. X. Yang, "AntimonyCoated SiC Nanoparticles as Stable and High-Capacity Anode Materials for
Li-Ion Batteries," (in English), J Phys Chem C, vol. 114, no. 35, pp. 15196-
15201, Sep 9 2010, doi: 10.1021/jp104099r.
[29] C. K. Chan, X. F. Zhang, and Y. Cui, "High capacity Li ion battery anodes
using Ge nanowires," (in English), Nano Lett, vol. 8, no. 1, pp. 307-309, Jan
2008, doi: 10.1021/nl0727157.
[30] G. L. Soloveichik, "Battery Technologies for Large-Scale Stationary Energy
Storage," (in English), Annu Rev Chem Biomol, vol. 2, pp. 503-527, 2011,
doi: 10.1146/annurev-chembioeng-061010-114116.
[31] Y. Han et al., "Single‐or poly‐crystalline Ni‐rich layered cathode, sulfide or
halide solid electrolyte: which will be the winners for all‐solid‐state
batteries?," Advanced Energy Materials, vol. 11, no. 21, p. 2100126, 2021.
[32] Y. Zhang et al., "Composite anode material of silicon/graphite/carbon
nanotubes for Li-ion batteries.," vol. 51, no. 23, 2006.
[33] J. Xu, S. Dou, H. Liu, and L. Dai, "Cathode materials for next generation
lithium ion batteries.," vol. 2, no. 4, 2019.
95
[34] Y. Mekonnen, A. Sundararajan, and A. I. Sarwat., "A review of cathode and
anode materials for lithium-ion batteries.," 2016: IEEE.
[35] R. Jung, M. Metzger, F. Maglia, C. Stinner, and H. A. Gasteiger, "Chemical
versus electrochemical electrolyte oxidation on NMC111," vol. 8, no. 19,
2017.
[36] H. F. Yu et al., "Lithium-conductive LiNbO3 coated high-voltage
LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability," (in
English), Green Energy Environ, vol. 7, no. 2, pp. 266-274, Apr 2022, doi:
10.1016/j.gee.2020.09.011.
[37] F. X. Xin et al., "What is the Role of Nb in Nickel-Rich Layered Oxide
Cathodes for Lithium-Ion Batteries?," (in English), Acs Energy Lett, vol. 6,
no. 4, pp. 1377-1382, Apr 9 2021, doi: 10.1021/acsenergylett.1c00190.
[38] J. Zhu and G. Chen, "Single-crystal based studies for correlating the
properties and high-voltage performance of Li [Ni x Mn y Co 1− x− y] O 2
cathodes," J Mater Chem A, vol. 7, no. 10, pp. 5463-5474, 2019.
[39] G. N. Qian et al., "Single-crystal nickel-rich layered-oxide battery cathode
materials: synthesis, electrochemistry, and intra-granular fracture," (in
English), Energy Storage Mater, vol. 27, pp. 140-149, May 2020, doi:
10.1016/j.ensm.2020.01.027.
[40] N. Y. Kim, T. Yim, J. H. Song, J.-S. Yu, and Z. Lee, "Microstructural study
on degradation mechanism of layered LiNi0. 6Co0. 2Mn0. 2O2 cathode
materials by analytical transmission electron microscopy," J Power Sources,
vol. 307, pp. 641-648, 2016.
[41] R. Jung et al., "Nickel, manganese, and cobalt dissolution from Ni-rich NMC
and their effects on NMC622-graphite cells," J Electrochem Soc, vol. 166, no.
2, p. A378, 2019.
[42] R. Jung, M. Metzger, F. Maglia, C. Stinner, and H. A. Gasteiger, "Oxygen
release and its effect on the cycling stability of LiNixMnyCozO2 (NMC)
cathode materials for Li-ion batteries," J Electrochem Soc, vol. 164, no. 7, p.
A1361, 2017.
[43] P. Arora, R. E. White, and M. Doyle, "Capacity fade mechanisms and side
reactions in lithium‐ion batteries," J Electrochem Soc, vol. 145, no. 10, p.
3647, 1998.
[44] J. Li, H. Y. Li, W. Stone, R. Weber, S. Hy, and J. R. Dahn, "Synthesis of
Single Crystal LiNi0.5Mn0.3Co0.2O2 for Lithium Ion Batteries," (in
English), J Electrochem Soc, vol. 164, no. 14, pp. A3529-A3537, 2017, doi:
10.1149/2.0401714jes.
[45] W. W. Yan, X. B. Jia, S. Y. Yang, Y. Y. Huang, Y. Yang, and G. H. Yuan,
"Synthesis of Single Crystal
LiNi(0.92)Co(0.06)Mn(0.01)Al(0.01)O(2)Cathode Materials with Superior
Electrochemical Performance for Lithium Ion Batteries," (in English), J
Electrochem Soc, vol. 167, no. 12, Jan 9 2020, doi: ARTN
12051410.1149/1945-7111/abacea.
[46] S. Payandeh, D. Goonetilleke, M. Bianchini, J. Janek, and T. Brezesinski,
"Single versus poly-crystalline layered oxide cathode materials for solid-state
battery applications-a short review article," (in English), Curr Opin
Electroche, vol. 31, Feb 2022, doi: ARTN
10087710.1016/j.coelec.2021.100877.
96
[47] X. B. Kong et al., "Single-crystal structure helps enhance the thermal
performance of Ni-rich layered cathode materials for lithium-ion batteries,"
(in English), Chem Eng J, vol. 434, Apr 15 2022, doi: ARTN
13463810.1016/j.cej.2022.134638.
[48] Y. Hu, X. Zhao, and Z. Suo, "Averting cracks caused by insertion reaction in
lithium–ion batteries," Journal of Materials Research, vol. 25, no. 6, pp.
1007-1010, 2010.
[49] X. Xu et al., "Radially Oriented Single-Crystal Primary Nanosheets Enable
Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode
Material for Lithium-Ion Batteries," (in English), Advanced Energy Materials,
vol. 9, no. 15, Apr 18 2019, doi: ARTN 180396310.1002/aenm.201803963.
[50] W. Bao et al., "Simultaneous enhancement of interfacial stability and kinetics
of single-crystal LiNi0. 6Mn0. 2Co0. 2O2 through optimized surface coating
and doping," Nano Lett, vol. 20, no. 12, pp. 8832-8840, 2020.
[51] L. J. Zhang, L. Xiao, J. F. Zheng, H. Wang, H. Chen, and Y. R. Zhu, "Effect
of Nb5+ Doping and LiNbO3 Coating on the Structure and Surface of a
LiNi0.8Mn0.2O2 Cathode Material for Lithium-Ion Batteries," (in English), J
Electrochem Soc, vol. 168, no. 11, Nov 1 2021, doi: ARTN
11052810.1149/1945-7111/ac35fb.
[52] H.-H. Ryu, K.-J. Park, C. S. Yoon, and Y.-K. Sun, "Capacity fading of Ni-rich
Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density
lithium-ion batteries: bulk or surface degradation?," Chem Mater, vol. 30, no.
3, pp. 1155-1163, 2018.
[53] X. Huang, "Separator technologies for lithium-ion batteries," vol. 15, 2011.
[54] C. J. Orendorff, "The Role of Separators in Lithium-Ion Cell Safety," vol. 21,
no. 61, 2012.
[55] H.-S. Jeong, S. C. Hong, and S.-Y. Lee., "Effect of microporous structure on
thermal shrinkage and electrochemical performance of Al2O3/poly
(vinylidene fluoride-hexafluoropropylene) composite separators for lithiumion batteries.," vol. 364, no. 1, 2010.
[56] Y. K. Ahn, Y. K. Kwon, and K. J. Kim, "Surface‐modified polyethylene
separator with hydrophilic property for enhancing the electrochemical
performance of lithium‐ion battery.," vol. 44, no. 8, 2020.
[57] M. Amereller et al., "Electrolytes for lithium and lithium ion batteries: From
synthesis of novel lithium borates and ionic liquids to development of novel
measurement methods.," vol. 4, no. 42, 2014.
[58] R. Miao, J. Yang, Z. Xu, J. Wang, Y. Nuli, and L. Sun, "A new ether-based
electrolyte for dendrite-free lithium-metal based rechargeable batteries.," vol.
6, no. 1, 2016.
[59] M. C. Smart, R. , V., and S. Surampudi, "Use of Organic Esters as Cosolvents
in Electrolytesfor Lithium-Ion Batteries with Improved LowTemperature
Performance," vol. 149, no. 4, 2002.
[60] D. Zuo, G. Tian, X. Li, D. Chen, and K. Shu, "Recent progress in surface
coating of cathode materials for lithium ion secondary batteries," Journal of
Alloys and Compounds, vol. 706, pp. 24-40, 2017.
[61] S. Dou, "Review and prospect of layered lithium nickel manganese oxide as
cathode materials for Li-ion batteries," Journal of Solid State
Electrochemistry, vol. 17, no. 4, pp. 911-926, 2013.
97
[62] T.-F. Yi, Y. Xie, Y.-R. Zhu, R.-S. Zhu, and M.-F. Ye, "High rate micron-sized
niobium-doped LiMn1. 5Ni0. 5O4 as ultra high power positive-electrode
material for lithium-ion batteries," J Power Sources, vol. 211, pp. 59-65,
2012.
[63] L. Tian, K. Liang, X. Wen, K. Shi, and J. Zheng, "Enhanced cycling stability
and rate capability of LiNi0. 80Co0. 15Al0. 05O2 cathode material by a facile
coating method," Journal of Electroanalytical Chemistry, vol. 812, pp. 22-27,
2018.
[64] S. Xia, F. Li, F. Chen, and H. Guo, "Preparation of FePO4 by liquid-phase
method and modification on the surface of LiNi0. 80Co0. 15Al0. 05O2
cathode material," Journal of Alloys and Compounds, vol. 731, pp. 428-436,
2018.
[65] Y. Lu, S. Shi, F. Yang, T. Zhang, H. Niu, and T. Wang, "Mo-doping for
improving the ZrF4 coated-Li [Li0. 20Mn0. 54Ni0. 13Co0. 13] O2 as high
performance cathode materials in lithium-ion batteries," Journal of Alloys and
Compounds, vol. 767, pp. 23-33, 2018.
[66] X. Wang, H. Wang, J. Wen, Y. Tan, and Y. Zeng, "Surface modification of
LiMn2O4 cathode with LaCoO3 by a molten salt method for lithium ion
batteries," Ceramics International, vol. 47, no. 5, pp. 6434-6441, 2021.
[67] T. R. Somo et al., "A Comparative Review of Metal Oxide Surface Coatings
on Three Families of Cathode Materials for Lithium Ion Batteries," (in
English), Coatings, vol. 11, no. 7, Jul 2021, doi: ARTN
74410.3390/coatings11070744.
[68] F. Ma, Y. Wu, G. Wei, S. Qiu, and J. Qu, "Enhanced electrochemical
performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode via wet-chemical coating of
MgO," Journal of Solid State Electrochemistry, vol. 23, no. 7, pp. 2213-2224,
2019.
[69] H. Yin, X.-X. Yu, H. Zhao, C. Li, and M.-Q. Zhu, "Towards highperformance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.
8Co0. 15Zn0. 05O2," Journal of Solid State Electrochemistry, vol. 22, no. 8,
pp. 2395-2403, 2018.
[70] S. Tao et al., "Nanoscale TiO2 membrane coating spinel LiNi0. 5Mn1. 5O4
cathode material for advanced lithium-ion batteries," Journal of Alloys and
Compounds, vol. 705, pp. 413-419, 2017.
[71] S. H. Jung et al., "Extremely conductive RuO2-coated LiNi0. 5Mn1. 5O4 for
lithium-ion batteries," Electrochim Acta, vol. 232, pp. 236-243, 2017.
[72] Z. Du, W. Peng, Z. Wang, H. Guo, Q. Hu, and X. Li, "Improving the
electrochemical performance of Li-rich Li1. 2Ni0. 13Co0. 13Mn0. 54O2
cathode material by LiF coating," Ionics, vol. 24, no. 12, pp. 3717-3724,
2018.
[73] Q. Wu et al., "Improved electrochemical performance of spinel LiMn 1.5 Ni
0.5 O 4 through MgF 2 nano-coating," Nanoscale, vol. 7, no. 38, pp. 15609-
15617, 2015.
[74] C. M. Julien and A. Mauger, "Functional behavior of AlF 3 coatings for highperformance cathode materials for lithium-ion batteries," AIMS Materials
Science, vol. 6, no. 3, pp. 406-440, 2019.
[75] Y. Li et al., "LaF3 nanolayer surface modified spinel LiNi0. 5Mn1. 5O4
cathode material for advanced lithium-ion batteries," Ceramics International,
vol. 44, no. 4, pp. 4058-4066, 2018.
98
[76] Z. Xiao et al., "Modification research of LiAlO2-coated LiNi0. 8Co0. 1Mn0.
1O2 as a cathode material for lithium-ion battery," Ionics, vol. 24, no. 1, pp.
91-98, 2018.
[77] L. Song, J. Liu, Z. Xiao, Z. Cao, and H. Zhu, "Thermoeletrochemical study on
LiNi0. 8Co0. 1Mn0. 1O2 with in situ modification of Li2ZrO3," Ionics, vol.
24, no. 11, pp. 3325-3335, 2018.
[78] J. M. Zheng, P. F. Yan, L. Estevez, C. M. Wang, and J. G. Zhang, "Effect of
calcination temperature on the electrochemical properties of nickel-rich
LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries," (in English),
Nano Energy, vol. 49, pp. 538-548, Jul 2018, doi:
10.1016/j.nanoen.2018.04.077.
[79] M. Wang, D. Dang, A. Meyer, R. Arsenault, and Y.-T. Cheng, "Effects of the
mixing sequence on making lithium ion battery electrodes," J Electrochem
Soc, vol. 167, no. 10, p. 100518, 2020.
[80] I. Hwang, C. W. Lee, J. C. Kim, and S. Yoon, "Particle size effect of Ni-rich
cathode materials on lithium ion battery performance," (in English), Mater
Res Bull, vol. 47, no. 1, pp. 73-78, Jan 2012, doi:
10.1016/j.materresbull.2011.10.002.
[81] G. Qian et al., "Temperature-swing synthesis of large-size single-crystal
LiNi0. 6Mn0. 2Co0. 2O2 cathode materials," J Electrochem Soc, vol. 168, no.
1, p. 010534, 2021.
[82] J. H. Kim, H. Kim, W. Choi, and M. S. Park, "Bifunctional Surface Coating
of LiNbO3 on High-Ni Layered Cathode Materials for Lithium-Ion Batteries,"
(in English), Acs Appl Mater Inter, vol. 12, no. 31, pp. 35098-35104, Aug 5
2020, doi: 10.1021/acsami.0c10799.
[83] P. Steiner and H. Höchst, "X-ray excited photoelectron spectra of LiNbO3: A
quantitative analysis," Zeitschrift für Physik B Condensed Matter, vol. 35, no.
1, pp. 51-59, 1979.
[84] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable
batteries," (in English), Chem Rev, vol. 104, no. 10, pp. 4303-4417, Oct 2004,
doi: 10.1021/cr030203g.
[85] K. Xu, "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable
Batteries," Chemical Reviews, vol. 104, no. 10, 2004.
[86] H. Zhou, F. X. Xin, B. Pei, and M. S. Whittingham, "What Limits the
Capacity of Layered Oxide Cathodes in Lithium Batteries?," (in English), Acs
Energy Lett, vol. 4, no. 8, pp. 1902-1906, Aug 2019, doi:
10.1021/acsenergylett.9b01236.
[87] D. Brouillette, G. Perron, and J. E. Desnoyers, "Effect of viscosity and
volume on the specific conductivity of lithium salts in solvent mixtures,"
Electrochimica Acta, vol. 44, no. 26, pp. 4721-4742, 1999.
[88] L. Sun, O. Morales-Collazo, H. Xia, and J. F. Brennecke, "Effect of Structure
on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion
Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic
Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation,"
Journal of Physical Chemistry, vol. 120, no. 25, pp. 5767–5776, 2016.
[89] L. Sun, O. Morales-Collazo, H. Xia, and J. F. Brennecke, "Effect of Structure
on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion
Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic
Liquids. 1. Variation of Anionic Species," J Phys Chem B, vol. 119, no. 48,
pp. 15030-9, Dec 3 2015, doi: 10.1021/acs.jpcb.5b09175.
99
[90] X. L. Li et al., "LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high
discharge capacity and rate performance for all-solid-state lithium battery,"
(in English), J Energy Chem, vol. 40, pp. 39-45, Jan 2020, doi:
10.1016/j.jechem.2019.02.006.
[91] T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, and C. Bock, "Degradation
mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion
batteries," Electrochemical Energy Reviews, vol. 3, no. 1, pp. 43-80, 2020.
[92] F. Wu et al., "Improving the reversibility of the H2-H3 phase transitions for
layered Ni-rich oxide cathode towards retarded structural transition and
enhanced cycle stability," Nano Energy, vol. 59, pp. 50-57, 2019.
[93] Y. G. Li, H. F. Yu, Y. J. Hu, H. Jiang, and C. Z. Li, "Surface-engineering of
layered LiNi0.815Co0.15Al0.035O2 cathode material for high-energy and
stable Li-ion batteries," (in English), J Energy Chem, vol. 27, no. 2, pp. 559-
564, Mar 2018, doi: 10.1016/j.jechem.2017.11.004.
[94] N. Ohta et al., "LiNbO3-coated LiCoO2 as cathode material for all solid-state
lithium secondary batteries," (in English), Electrochem Commun, vol. 9, no. 7,
pp. 1486-1490, Jul 2007, doi: 10.1016/j.elecom.2007.02.008.

無法下載圖示 全文公開日期 2028/02/15 (校內網路)
全文公開日期 2028/02/15 (校外網路)
全文公開日期 2028/02/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE