簡易檢索 / 詳目顯示

研究生: 李明輝
Ming-Hui Li
論文名稱: 應用於再生能源系統之高效率昇壓型直流-直流轉換器
High-Efficiency Step-Up DC/DC Converter for Renewable Energy Power Applications
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 黃仲欽
Jong-Chin Hwang
鍾聖倫
Sheng-Luen Chung
梁錦宏
Jin-Hong Liang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 電流前饋昇壓轉換器無損緩衝器低輸出電流連波
外文關鍵詞: lossless snubber, current ripple cancellation
相關次數: 點閱:261下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地球的暖化以及利用石油能源所帶來的種種問題,所以尋找無汙染可替代性能源及發展高效率的能源轉換系統已經是時勢所趨。 燃料電池和太陽能電池於未來是被考慮為最具有發展性的新能源之一。
    但是,燃料電池和太陽能電池所產生的輸出電壓低並且變化範圍大所以無法直接提供一般電器使用。 因此,需要一級高昇壓比轉換器將低電壓提升至穩定的高壓(200V or 400V)輸出。
    在各式的昇壓電路中,由於燃料電池和太陽能電池具有高輸出阻抗的特性,所以電流前饋式電路拓普較適合做為燃料電池和太陽能電池的昇壓電路。 再著,電流前饋式電路拓普還具有連續性的輸入電流、不需輸出電感且以較小變壓器匝比提供較大的電壓增益…等優點。
    變壓器二次側通常需要全波整流電路和一級濾波器以產生穩定的高電壓輸出,但也就伴隨著以下的問題。
    一、 變壓器二次側漏感上的能量會造成整流二極體有較高的電壓突波。
    二、 無輸出濾波電感,因此會有較大的輸出電流漣波。
    因此,通常都會在二極體上加入RC緩衝電路抑制電壓突波,增加輸出電容的數量以降低電流漣波,但也降低了轉換器效率及功率密度。
    為了降低上述缺點所帶來的影響,本文提出兩種新式全波整流電路1.低輸出電流漣波之全波整流電路2.無輸出電流漣波之全波整流電路。
    這兩種新式全波整流電路皆具有能吸收變壓器漏感的能量以降低二極體上電壓突波、低輸出電流漣波以減少輸出電容個數提昇功率密度…等優點。
    應用這兩種新式整流電路,除了理論分析並實作驗證於低輸出電流漣波之昇壓轉換器(BCRR)、雙輸入電感低輸出電流漣波之昇壓轉換器(DI-BCRR)、雙輸入電感無輸出電流漣波之昇壓轉換器(DI-BCRC),操作在開關頻率150 kHz、輸出電壓24V~34V,200V、600瓦輸出的規格上。


    Developing a clean, high efficiency alternative energy power system has become an urgent matter. Fuel cells and photovoltaic solar cells are considered two of the alternative energy sources for the future. However, both fuel cell and solar cell produce wide-range low DC output voltage and cannot directly support AC or DC electrical appliances. Therefore, this necessitates a step-up converter.
    Among various step-up converter topologies, current-fed configuration is more suitably than voltage-fed configuration due to high output impedance of these cells. Furthermore, current-fed configuration has a non-pulsating input current, no output inductor, and a smaller turns-ratio in the high voltage transformer design.
    However, a full-wave rectification circuit and filter circuit are essentially required on the secondary side of the transformer to generate high DC output voltage. Two key issues of concern have to be dealt with in these two stages.
    1. Employing center-tapped or bridge-type rectification circuit, there is a voltage spikes caused by transformer leakage inductance resulting in using high voltage-rating rectifier diode.
    2. The output current suffers from high current ripple due to the absence of an output inductor.
    Consequently, turn-off snubber circuit, and larger output capacitor are needed. These components decrease converter efficiency and power density.
    To alleviate these two problems, two rectification circuits: a full-wave rectification circuit with output current ripple reduction and a full-wave rectification circuit with output current ripple cancellation, are proposed in this thesis. Both circuits feature minimum of the voltage spike on the rectifier diode and small current ripple of the output capacitor.
    Applying the proposed rectification circuits, three converters, a boost converter with output current ripple reduction (BCRR), a dual-inductor boost converter with output current ripple reduction (DI-BCRR), and a dual-inductor boost converter with output current ripple reduction (DI-BCRC), are presented. In addition to the description of the operation principle, theoretical analysis, and design considerations, circuits are implemented and tested with 150 kHz, 24-34V input and 200V/600W output specifications.

    Abstract.........Ⅰ Acknowledgements.........Ⅲ Table of Contents.........Ⅳ List of Figures.........Ⅵ List of Tables.........Ⅸ Chapter 1 Introduction.........1 1.1 Background and Motivation.........1 1.2 Objectives of the Thesis.........3 1.3 Organization of the Thesis.........4 Chapter 2 Boost Converter with Output Current Ripple Reduction (BCRR).........5 2.1 Introduction.........5 2.2 Operational Principle.........7 2.3 Circuit Analysis.........11 2.4 Comparisons of the BCRR and CF-CT.........16 2.5 Circuit Design .........19 2.6 Simulation Results.........23 2.7 Experimental Results.........27 2.8 Dual inductor boost converter with output current ripple reduction (DI-BCRR).........32 2.8.1 Operational Principle......... 32 2.8.2 The main features of the DI-BCRR.........34 2.8.3 Experimental Results.........35 2.9 Summary.........37 Chapter 3 Dual Inductor Boost Converter with Output Current Ripple Cancellation (DI-BCRC).........39 3.1 Introduction.........39 3.2 Operational Principle.........41 3.3 Circuit Analysis.........46 3.4 Simulation Results.........48 3.5 Experimental Results.........49 3.6 Summary.........54 Chapter 4 Conclusions and Future Researches.........55 4.1 Conclusions.........55 4.2 Future Researches.........56 Reference .........57 Appendix.........62 Vita.........73

    [1] Santi, E., Franzoni, D., Monti, A., Patterson, D., Ponci, F., and Barry, N. “A Fuel Cell Based Domestic Uninterruptible Power Supply,” Applied Power Electronics Conference and Exposition, Vol. 1, pp. 605–613, 2002.
    [2] W. Choi, P. N. Enjeti, and J. W. Howze, “Development of an Equivalent Circuit Model of a Fuel Cell to Evaluate the Effects of Inverter Ripple Current,” APEC '04. Nineteenth Annual IEEE Applied Power Electronics Conference, Vol. 1, pp. 355-361, 2004.
    [3] G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, "Interactions between fuel cells and power converters influence of current harmonics on a fuel cell stack," Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual , vol.6, no., pp. 4729-4735 Vol.6, 20-25 June 2004
    [4] S. Jemei, D. Hissel, M.-C. Pera, and J.M. Kauffmann, "A New Modeling Approach of Embedded Fuel-Cell Power Generators Based on Artificial Neural Network," IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 437-447, Jan 2008.
    [5] J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 1103–1112, 2004.
    [6] Thounthong, P., Sethakul, P., Rael, S., and Davat, B., "Design and implementation of 2-phase interleaved boost converter for fuel cell power source," Power Electronics, Machines and Drives, 2008. PEMD 2008. 4th IET Conference on , vol., no., pp.91-95, 2-4 April 2008.
    [7] D. J. Perreault, and J. G. Kassakian, “Distributed interleaving of paralleled power converters,” IEEE Trans. on Circuit and Systems, vol. 44, no. 8, pp. 728-734, Aug. 1997.
    [8] M. Veerachary, T. Senjyu, and K.Uezato. "Signal flow graph nonlinear modelling of interleaved Converters," lEE Proc. Electr. Power Appl., vol. 148, pp. 410-418, 2001.
    [9] Shin, H. B., J. G. Park, S. K. Chung, H. W. Lee, and T. A. Lipo, "Generalized Steady-state Analysis of Multiphase Interleaved Boost Converter with Coupled Inductors," IEEE Proc.-Electr. Power Appl., Vol. 152, No. 3, May 2005.
    [10] M. Baumann, and J. W. Kolar. "Parallel connection of two three-phase three-switch buck-type unity-power-factor rectifier systems with DC-link current balancing," IEEE Trans. Ind. Electron., vol. 54, pp. 3042-3053, 2007.
    [11] Lembeye, Y., Bang, V.D., Lefevre, G. and Ferrieux, J.-P. “Novel Half-Bridge Inductive DC–DC Isolated Converters for Fuel Cell Applications” IEEE Transactions on Volume 24, Issue 1, pp.203-210, March 2009
    [12] X. Xie, J. M. Zhang, D. Jiao, and Z. Qian, “A Novel Control Scheme for the Two-Inductor Boost Converter,” in Proc. IEEE International Conference on Power Electronics and Drive Systems, pp. 578-581, 2003.
    [13] Jung-Min Kwon., and Bong-Hwan Kwon, "High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems," Power Electronics, IEEE Transactions on , vol.24, no.1, pp.108-115, Jan. 2009
    [14] Jang, S.-J., Chung-Yuen Won, Byoung-Kuk Lee, and Jin Hur, "Fuel Cell Generation System With a New Active Clamping Current-Fed Half-Bridge Converter," IEEE Transactions on Energy Conversion, vol.22, no.2, pp.332-340, June 2007
    [15] Y. Jang, and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 19, No. 2, pp. 169-175, 2004.
    [16] Quan Li, and Wolfs, P., "The Power Loss Optimization of a Current Fed ZVS Two-Inductor Boost Converter With a Resonant Transition Gate Drive," IEEE Transactions on Power Electronics, vol.21, no.5, pp.1253-1263, Sept. 2006
    [17] Lixin Tang, and Gui-Jia Su, "An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications," IEEE Transactions on Industry Applications, vol.44, no.5, pp.1638-1644, Sept.-oct. 2008.
    [18] Zhu, L., "A Novel Soft-Commutating Isolated Boost Full-Bridge ZVS-PWM DC–DC Converter for Bidirectional High Power Applications," Power Electronics, IEEE Transactions on , vol.21, no.2, pp. 422-429, March 2006.
    [19] K. C. Tseng, and T. J. Liang, “Novel High-efficiency Step-up Converter,” IEE Proceedings of Electric Power Applications, Vol. 151, pp. 182-190, 2004.
    [20] E.-H. Kim, and B.-H. Kwon, "High step-up resonant push-pull converter with high efficiency," Power Electronics, IET , vol.2, no.1, pp.79-89, January 2009
    [21] Todorovic, M.H., Palma, L., and Enjeti, P.N., "Design of a Wide Input Range DC–DC Converter With a Robust Power Control Scheme Suitable for Fuel Cell Power Conversion," Industrial Electronics, IEEE Transactions on , vol.55, no.3, pp.1247-1255, March 2008.
    [22] Rong-Jong Wai, Chung-You Lin, Rou-Yong Duan, and Yung-Ruei Chang, "High-Efficiency Power Conversion System for Kilowatt-Level Stand-Alone Generation Unit With Low Input Voltage," IEEE Transactions on Industrial Electronics, vol.55, no.10, pp.3702-3714, Oct. 2008
    [23] Rong-Jong Wai, Chung-You Lin, Rou-Yong Duan, and Yung-Ruei Chang, "High-Efficiency DC-DC Converter With High Voltage Gain and Reduced Switch Stress," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb 2007.
    [24] S. Jalbrzykowski, and T. Citko, "Current-Fed Resonant Full-Bridge Boost DC/AC/DC Converter," IEEE Trans. on Industrial Electronics, vol. 55, no. 3, pp. 1198-1205, March 2008.
    [25] Tsai-Fu Wu, Yu-Sheng Lai, Jin-Chyuan Hung, Yaow-Ming Chen, "Boost Converter With Coupled Inductors and Buck–Boost Type of Active Clamp," IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan 2008
    [26] Sharma, R.; Hongwei Gao, "Low cost high efficiency DC-DC converter for fuel cell powered auxiliary power unit of a heavy vehicle," Power Electronics, IEEE Transactions on , vol.21, no.3, pp.587-591, May 2006.
    [27] J. Wang, F. Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, “Low Cost Fuel Cell Converter System for Residential Power Generation,” IEEE Transactions on Power Electronics, vol. 19, pp. 1315-1322, 2004.
    [28] Ke Jin and Xinbo Ruan, “Hybrid Full-Bridge Three-Level LLC Resonant Converter-Hybrid Full-Bridge Three-Level LLC Resonant Converter,” IEEE Power Electronics Specialist Conference, pp.361-367, 2005.
    [29] Rong-Jong Wai, Li-Wei Liu, and Rou-Yong Duan, "High-efficiency Voltage-clamped DC-DC converter with reduced reverse-recovery current and switch-Voltage stress," Industrial Electronics, IEEE Transactions on , vol.53, no.1, pp. 272-280, Feb. 2006.
    [30] X. Kong and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” Proc. of the IEEE Power Electronics and Drives Systems, pp. 474-479(2005).
    [31] Duarte, J.L., Hendrix, M., and Simoes, M.G., "Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems," Power Electronics, IEEE Transactions on , vol.22, no.2, pp.480-487, March 2007.
    [32] Kim, S.C., Nam, S.H., Kim, S.H., Kim, D.T., and Jeong, S.H., "High power density, high frequency, and high voltage pulse transformer," Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers , vol.1, no., pp. 808-811 vol.1, 2001
    [33] M. A. Perez, C. Blanco, M. Rico, and F. F. Linera, “A new topology for high voltage, high frequency transformers,” in Proc. IEEE APEC'95, 1995, pp. 554-559.
    [34] D. A. Ruiz-Caballero, and I. Barbi, “A new flyback-current-fed push-pull DC-DC converter,” IEEE Trans. Power Electron., vol. 14, pp. 1056-1064, Nov. 1999.
    [35] W.A. Peterson and S.L. Plaskon, “Dual charge mode control of a current fed boost-buck push-pull converter,” IEEE IAS Conference, 1998, pp. 1596 to 1603
    [36] Albrecht, J.J., Young, J., and Peterson, W.A., "Boost-buck push-pull converter for very wide input range single stage power conversion," Applied Power Electronics Conference and Exposition, 1995. APEC '95. Conference Proceedings 1995., Tenth Annual , vol., no.0, pp.303-308 vol.1, 5-9 Mar 1995
    [37] Rong-Jong Wai, Chung-You Lin, Rou-Yong Duan, and Yung-Ruei Chang, "High-Efficiency Power Conversion System for Kilowatt-Level Stand-Alone Generation Unit With Low Input Voltage," IEEE Transactions on Industrial Electronics, vol.55, no.10, pp.3702-3714, Oct. 2008.
    [38] Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 19, No. 2, pp. 169-175, 2004.
    [39] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” R.O.C. Conference on Electrical Power Engineering, pp. 522-527, Nov. 2004.
    [40] D. C. Lu, D. K. W. Cheng, and Y. S. Lee, “A single-switch continuous-conduction-mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767-776, 2003.
    [41] D. A. Grant, “Diode recovery current suppression circuit”, Electronics Letters, Vol.38, No.5,February 2002.
    [42] Hanju Cha, Jungwan Choi, and Enjeti, P.N., "A Three-Phase Current-Fed DC/DC Converter With Active Clamp for Low-DC Renewable Energy Sources," IEEE Transactions on Power Electronics, vol.23, no.6, pp.2784-2793, Nov. 2008
    [43] Jung-Min Kwon, Bong-Hwan Kwon, "High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems," IEEE Transactions on Power Electronics, vol.24, no.1, pp.108-115, Jan. 2009
    [44] Ching-Shan Leu, "Low Voltage Stress Power Converter, " U. S. Patent 7,515,439, April 7, 2009.
    [45] Ching-Shan Leu, Fred C Lee and Ming Xu, “Improved forward topologies for DC-DC applications with built-in input filter,” Proceedings of CPES annual seminar, April 2008, pages 421-426.
    [46] 梁適安, “交換式電源供給器之理論與實務設計” 全華科技圖書股份有限公司,2006。
    [47] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
    [48] R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed, Kluwer Academic Publishers, 2001.
    [49] “Power Design” http://www.mag-inc.com/pdf/2006_Ferrite_Catalog/2006_Design_Information.pdf
    [50] “SIMPLIS reference manual” Catena software Ltd.
    http://www.catena.uk.com/site/downloads/manuals.htm
    [51] “Users manual” Catena software Ltd.
    http://www.catena.uk.com/site/downloads/manuals.htm
    [52] TI, “Current Doubler Rectifier Offers Ripple Current
    Cancellation” ,Application Note SLUA323-SEP 2004.
    [53] L. Balogh, The Current-Doubler Rectifier: An Alternative Rectification Technique for Push-Pull and Bridge Converter, Unitrode, Design Note, DN-63.
    [54] P. Alou, J. A. Oliver, O. Garcia, R. Prieto and J. A. Cobos, “Comparison of Current Doubler Rectifier and Center Tapped Rectifier for Low Voltage Applications,” Proceedings of 21st Annual IEEE Applied Power Electronics Conference and Exposition, pp. 744-750, 2006.
    [55] W. C. P. De Aragao Filho and I. Barbi, “A comparison between two current-fed push-pull DC-DC converters-analysis, design and experimentation,” IEEE Proc. INTELEC’96, pp. 313-320, Oct. 1996.

    QR CODE