簡易檢索 / 詳目顯示

研究生: 洪均瑋
Chun-Wei Hung
論文名稱: 運用儲能系統於再生能源平滑化之策略研究
Research on the Strategy of Energy Storage System for Smoothing of Renewable Energy
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
張建國
李俊耀
陳柏宏
郭政謙
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 儲能系統再生能源平滑化系統設備遲延成本最低
外文關鍵詞: Energy Storage System, Renewable Energy, Smoothing Method, Duty time, Low cost
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

再生能源已經是全世界能源發展的趨勢,歐盟再生能源條例、RE100、台灣再生能源發展條例的推波下,未來再生能源發展會越來越多,在離岸風力發電及太陽能發電在大量發展下,再生能源不穩定因素衝擊電網,造成停電等事故,為了因應大量再生能源併網造成衝擊,歐美、日本、台灣等各國頒布再生能源平滑化法規,限制再生能源功率變動率,導致儲能系統需求增加。
本論文研究儲能系統再生能源平滑化,驗證國內外文獻平滑化演算法,基於裝置容量大小去評估各演算法,本論文提出區間法,用最小的建置成本達到再生能源平滑化,評估電池及PCS所需要最小設計容量,提供設備時間遲延解決方法,且建議業者設備最低規格,提出儲能系統電池健康模式,延長電池壽命。


Renewable energy is already the energy trend all over the world. Renewable Energy Directive (EU), RE100 and Renewable Energy Development Act(Taiwan), such as offshore wind power and solar power plant. However, the power outages and grid instability was caused by the intermittent renewable energy sources. In order to deal with the impact of a large scale of renewable energy grid, countries such as Europe, America, Japan, Taiwan and other countries have promulgated act of renewable energy smoothing to limit the Ramp rates of renewable energy power and therefore cause an increase in the demand for Energy storage systems.
The Energy storage system is operated to reach smoothing of renewable energy by verifying the smoothing algorithms of domestic and foreign literature. A new smoothing method is proposed by evaluating the algorithms based on the scale of the device, in order to achieving the smoothing of renewable energy with the lowest cost of construction. Moreover, the smoothing method also can evaluate the minimum design capacity required by the battery and the PCS, and offer the solution to the duty time of the equipment for the tolerable limit of the duty time. To sum up, the smoothing method suggests the adequate equipment specification, and proposes the battery health mode of the energy storage system to extend the life of battery.

摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 研究背景與研究動機 1 1-2 文獻回顧 4 1-3 研究方法 7 第二章 再生能源和儲能系統介紹 9 2-1 再生能源簡介 9 2-2 太陽光電系統應用 10 2-3 儲能系統類型簡介 13 2-4 儲能系統應用 15 第三章 儲能系統架構與功能簡介 17 3-1 儲能系統架構 17 3-1.1 系統整合工作與儲能系統設備介紹 17 3-1.2 AC耦合系統(AC Coupled System ) 18 3-1.3 DC耦合系統(DC Coupled System ) 19 3-1.4 AC耦合與DC耦合比較總結 20 3-2 儲能系統設計與運用 22 3-3 儲能系統在微電網中的離網與併網 24 3-4 儲能系統中輔助服務介紹 25 3-4.1 儲能系統輔助服務頻率調節 26 3-4.2 儲能系統電壓虛功控制 27 3-5 儲能系統應用於再生能源 28 3-5.1 穩定輸出模式 29 3-5.2 防止逆送模式 33 第四章 最佳化平滑化 36 4-1 平滑化法規與起源 36 4-2 平滑化功率變動率10%定義 39 4-3 再生能源平滑化類型及有無預測太陽能影響 43 4-3.1 儲能系統平滑化無預測型 44 4-3.2 儲能系統平滑化有預測型 45 4-3.3 控制MPPT預測型平滑化 46 4-3.4 總結比較三種類型的平滑化 47 4-4 儲能系統無預測平滑化方法 49 4-4.1 Moving Average Method ( MA 移動平均數法) 51 4-4.2 Exponetion Moving Average(EMA 指數平均法) 52 4-4.3 Enhanced Linear Exponetial Smoothing (ELES增強指數法) 54 4-4.4 總結文獻方法及比較 55 4-4.5 研究上演算法中(N,α)對於電池需求容量的影響 60 4-5 實務應用上平滑化方法 62 4-5.1 演算法對於設備容量及成本的影響 62 4-5.2 傳統限制法平滑化 66 4-5.3 最大區間限制法 68 4-5.4 最大區間限制法公式原理 71 4-5.5 最大區間及限制法資料測試結果 75 4-5.6 平滑化設備延遲 80 第五章 平滑化下最佳電池使用策略 92 5-1 前言 92 5-2 定義電池最佳使用範圍及使用電流 97 5-2.1 電池SOC最佳使用範圍 97 5-2.2 電池最佳放電電流 100 5-3 平滑化演算法加入電池特性考量 101 5-4 電池策略總結 105 5-4.1電池健康模式要素 105 5-4.2電池健康模式電池壽命的影響 106 5-4.3 目前電池策略面臨的問題 107 第六章 結論貢獻與未來展望 108 6-1 結論貢獻 108 6-2 未來展望 110 參考文獻 112

[1] Clean energy for all Europeans package, 2018
[2]台灣再生能源發展條例,經濟部能源局,108
[3]能源轉型白皮書,經濟部能源局,106
[4] Javier Marcos, Luis Marroyo, Eduardo Lorenzo, David Alvira and Eloisa Izco.” Power output fluctuations in large scale PV plants:one year observations with one second resolution anda derived analytic model” " Progress in Photovoltaics: Research and Applications 19:218–227, 2010.
[5] Javier Marcos , Iñigo de la Parra, Miguel García and Luis Marroyo. "Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems" Energies 7(10): 6593-6619, 2014.
[6] National Renewable Energy Laboratory, “Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation,” 2013.
[7] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Technische Richtlinie, Erzeugungsanlagen Am Mittelspannungsnetz; BDEW: Germany; 138, 2008.
[8] Tetsuji Tomita, “Policies and Regulations for Electricity Storage in Japan,” The Institute of Energy Economics, Japan (IEEJ), New and Renewable Energy and International Cooperation Unit, 2014.
[9] “Demonstration Project utilizing Hybrid Storage Battery System in the Oki-islands,” Power System Division, The Chugoku Electric Power
Co., Inc, 2016.
[10] Michael Hagerty, Judy Chang, Heidi Bishop, “Battery Storage Development Regulatory and Market Environments,” The Brattle Group, 2018.
[11] DOE Global Energy Storage Database, https://energystorageexchange.org/projects/1452.[accessed2019.05].
[12] 儲能自動頻率控制(AFC),台灣電力公司,110
[13] 台南鹽田儲能系統財物採購帶安裝案,台灣電力公司,110
[14] Sukumar, S., H. Mokhlis, S. Mekhilef, M. Karimi and S. Raza "Ramp-rate control approach based on dynamic smoothing parameter to mitigate solar PV output fluctuations." International Journal of Electrical Power & Energy Systems 96: 296-305, 2018.

[15] Chen, X., Y. Du, H. Wen, L. Jiang and W. Xiao. "Forecasting- based power ramp-rate control strategies for utility-scale PV
systems." IEEE Transactions on Industrial Electronics, 66(3): 1862-1871, 2018.
[16] Peng, Q., A. Sangwongwanich, Y. Yang and F. Blaabjerg. "Grid-friendly power control for smart photovoltaic systems." Solar
Energy 210, 115-127, 2020.
[17] Xinmin Zhang, Yuan Li, Siyuan Lu, Hendrik F. Hamann, Bri-Mathias Hodge, Brad Lehman, “A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting,” IEEE Transactions on Sustainable Energy 10, 268-279, 2018.
[18] Alemu Tadesse, Adam Kankiewicz, Alex Kubiniec, Richard Perez, John Dise, Thomas Hoff, “Advances in long-term solar energy prediction and project risk assessment methodology,” 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 132-137 , 2017.
[19] S. Koohi-Kamali, N. Rahim, and H. Mokhlis, “Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load,” in Energy Conversation and Management 84, 562–582, 2014.
[20] A. R. Wilson, “Event triggered analog data acquisition using the exponential moving average,” in\ IEEE Sensors Journal 14(6): 2048–2055, 2014.
[21] P. Chanhom, S. Sirisukprasert, and N. Hatti, “Enhanced linear exponential smoothing technique with minimum energy storage capacity for PV distributed generations,” in International Review of Electrical Engineering-IREE 9, 1190–1196, 2014.
[22] Lee, D., J. Kim and R. Baldick. "Ramp rates control of wind power output using a storage system and gaussian processes." University of Texas at Austin, Electrical and Computer Engineering: Austin, TX, USA, 2012.
[23] Lee, D., J. Kim and R. Baldick. "Stochastic optimal control of the storage system to limit ramp rates of wind power output." IEEE Transactions on Smart Grid 4(4): 2256-2265, 2013.
[24] HITACHI ABB POWER GRIDS, Grid Edge Solutions to accelerate renewable deployment in islands and remote locations
[25] Sukumar, S., H. Mokhlis, S. Mekhilef, M. Karimi and S. Raza. "Ramp-rate control approach based on dynamic smoothing parameter to mitigate solar PV output fluctuations." International Journal of Electrical Power & Energy Systems 96: 296-305, 2018
[26] 能源統計月報,經濟部能源局,110
[27] Energy and Environment Economics Inc, “Investigating the Economic Value of Flexible Solar Power Plant Operation,” 2018.
[28] 電力系統安全穩定下,再生能源應優先併網,電業法第八條,108
[29] European Energy Reaserch Alliance, “European Energy Storage Technology Development RoadMap” 2017.
[30] Internationl Renewable Energy Agency(IRENA), “Renewables and Electricity Storage: A technology roadmap for REmap 2030,” 2015.
[31] 目前輔助服務市場之參與做法,輔助服務及備用容量交易平台,台灣電力公司,2021
[32] Uthpala N. Ekanayake and Uditha S. Navaratne ’’ A Survey on Microgrid Control Techniques in Islanded Mode’’ Hindawi Journal of Electrical and Computer Engineering 2020, 2020.
[33]吳進忠,再生能源併網運轉對電力調度挑戰與機會,台灣電力公司電力調度處,107
[34] RE100 is the global corporate renewable energy initiative bringing together hundreds of large and ambitious businesses committed to 100% renewable electricity, www.there100.org
[35]蔡忠哲,儲能系統於再生能源之整合應用研究,108
[36] California independent system operator, “What the duck curve tells us about managing a green grid,” 2016, https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf. [accessed 2019.05.10].
[37]張克勤,嚴偉倫,劉家維,國內2004-2013年間經典氣象年之日射量調查分析,台灣能源期刊,105
[38]https://commons.wikimedia.org/wiki/File:Solar_land_area.png
[39] Booth, S.; Gevorgian, V. Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation;
National Renewable Energy Laboratory: Golden, CO, USA, 2013.
[40] 台灣電力股份有限公司再生能源發電系統併聯技術要點,107
[41] Energinet.dk. Technical Regulation 3.2.2 for PV Power Plants Above 11 KW; Energinet.dk: Denmark, 2016; 1–108. Available online: https://en.energinet.dk/Electricity/Rules-and-Regulations/Regulations-forgrid-connection (accessed on 2019.08).
[42] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctuations caused by cloud passing,” in IEEE Transactions on Energy Conversion 29(2): 507–518, 2014.
[43] N. Kakimoto, H. Satoh, S. Takayama, and K. Nakamura, “Ramp-rate control of photovoltaic generator with electric double-layer capacitor,” in IEEE Transactions on Energy Conversion, 24(2): 465–473, 2009.
[44] S. G. Tesfahunegn, O. Ulleberg, P. J. Vie, and T. M. Undeland, “PV fluctuation balancing using hydrogen storage—a smoothing method for integration of PV generation into the utility grid,” Energy Procedia 12, 1015–1022, 2011.
[45] C. Jamroen, E. Usaratniwart, and S. Sirisukprasert, “PV power smoothing strategy based on heles using energy storage system application: a simulation analysis in microgrids,” IET Renewable Power Generation, 13(13): 2298–2308, 2019.
[46] Lin, D., X. Li, S. Ding and Y. Du. "Strategy comparison of power ramp rate control for photovoltaic systems." CPSS Transactions on Power Electronics and Applications 5(4): 329-341, 2020.
[47] Liu, H., Naqvi, I. H., Li, F., Liu, C., Shafiei, N., Li, Y., Pecht, M. ”An analytical model for the CC-CV charge of Li-ion batteries with application to degradation analysis,” Journal of Energy Storage, 29, 101342, 2020.
[48] ASUS Battery Health Charging
[49] Xu, B., Oudalov, A., Ulbig, A., Andersson, G., & Kirschen, D. S. “Modeling of lithium-ion battery degradation for cell life assessment”. IEEE Transactions on Smart Grid, 9(2), 1131-1140, 2016.
[50] Omar, N., Monem, M. A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O., Gaulous, H., Mulder, G., Van den Bossche, P., & Coosemans, T. “Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model.” Applied Energy 113, 1575-1585, 2014.
[51] Keil, P., & Jossen, A. “Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells.” Journal of Energy Storage 6, 125-141, 2016.

無法下載圖示 全文公開日期 2024/08/04 (校內網路)
全文公開日期 2031/08/04 (校外網路)
全文公開日期 2031/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE