簡易檢索 / 詳目顯示

研究生: 李定穎
Ting-Ying Lee
論文名稱: 一步合成石墨相氮化碳於硫化銅與硒化銅背電極並應用於量子點敏化太陽能電池
One-step synthesis of g-C3N4 on CuxS and CuxSe counter electrode its application of quantum dots-sensitized solar cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 林正嵐
Cheng-Lan Lin
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 120
中文關鍵詞: 石墨相氮化碳量子點敏化太陽能電池太陽能電池背電極複合材料背電極
外文關鍵詞: graphitic carbon nitride, quantun dots-sensitized solar cell, solar cell, counter electrode, composite counter electrode
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本次研究中,我們透過一步合成出複合材料的方式,來增加背電極的催化能力。因此選擇在原有的CuxS奈米顆粒中添加g-C3N4的前驅物,研發出一種新穎的CuxS/g-C3N4背電極。此種複合材料背電極結合了CuxS具有高催化活性的優勢、由硫脲形成的g-C3N4的網狀結構能讓CuxS更緻密於填滿背電極表面等優點,使得催化效果能夠大幅度的提升。從循環伏安法(Cyclic Voltammetry, CV)分析中以及背電極半電池的電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS)中可以觀察到,背電極以及電解液之間的傳遞阻抗都有明顯的改善。在後續的光電轉換效率(Power Conversion Efficiency, PCE)鑑定上能看到短路電流密度(short-circuit current density, Jsc)從原先的23.4 mA/cm2 提升至27.3 mA/cm2,因此在PCE值上也從原先的7.79 %提升至9.10 %。
    除此之外,我們也將CuxSe背電極取代原有的CuxS背電極並運用於其中。首先,在電化學分析上,同樣因為添加具有網狀結構的g-C3N4的CuxSe背電極能讓CuxSe奈米顆粒有更多的催化的接觸面積,同樣與CuxS/g-C3N4有較佳的表現。反映到光電轉換效率上, Jsc也從原先的24.4 mA/cm2上升到最佳條件的26.1 mA/cm2,因此也導致最後的效率值從原先的9.09 %上升到9.84 %。
    並且在CuxS/g-C3N4以及CuSSe/g-C3N4兩部分的電化學組抗分析實驗下得到了g-C3N4能夠有效的改善背電極與電解液介面之間的問題;並且添加適量的g-C3N4能改變複合材料的結構進而提升整體的化學穩定性,最後從循環伏安法(Cyclic Voltammetry, CV)中也能觀察到背電極的穩定性能有效地提升,成為新一代背電極的應用。


    Due to further enhance the catalytic ability of the counter electrode, we try to add some thiourea, precursor of g-C3N4, in our experiment. Besides, we create an innovative CuxS/g-C3N4 counter electrode. Combining the advantage of high catalytic activity from CuxS and the merit of more active site as well as well-distributed for CuxS on the surface of counter electrode from g-C3N4. Consequently, we can observe from the Tafel analysis and dummy cell EIS analysis of counter electrode that exchange current density and resistance value have improve by the addition. Thus, in the latter experiment of the power conversion efficiency, it has a significant change that the Jsc increase from the pristine CuxS CEs 23.4(mA/cm2) to a best condition CuxS/g-C3N4(20) CEs 27.3(mA/cm2). As a result, the PCE value also uprise from 7.79% to 9.10%.
    Moreover, we replace CuxS to a much better catalytic material CuxSe, that have been proved to use in the application of counter electrode. In electrochemistry analysis, with the added of g-C3N4, it has also a better performance than the original condition. The reason why it has a better consequce is also the same with CuS/g-C3N4 CEs. It can provide more contact area to the material of pristine counter electrode. When reflecting on the PCE result, we can also require the consequence that Jsc increase from 24.4(mA/cm2) from the original condition to 26.1(mA/cm2) from the better condition. As a result, PCE value also raise from 9.09% to 9.84%.
    Finally, we acquire the result that g-C3N4 can effectively fix the interface problem between counter electrode and electrolyte. Besides from the analysis of cyclic voltammetry, with the adequate amount of g-C3N4, it can enhance the stability of the counter electrode and applying it for the CE in the new generation.

    摘要 ⅱ Abstruct ⅲ 目錄 ⅳ 圖目錄 ⅶ 表目錄 ⅺ 第一章、 緒論 1 1.1 前言 1 1.2 太陽能電池的發展現況 1 1.2.1鈣鈦礦太陽能電池 2 1.2.2染料敏化太陽能電池 2 1.2.3量子點敏化太陽能電池 4 1.3 研究動機 4 第二章、 文獻回顧 6 2.1 量子點性質 6 2.1.1量子侷限效應(Quantum Confinement Effect)與尺寸效應(Size Effect) 7 2.1.2多重激子效應(Multiple Exciton Generation) 9 2.2 量子點敏化太陽能電池(Quantum-Dots-Sensitized Solar Cell, QDSSC) 11 2.2.1工作原理 11 2.2.2元件內部介紹 13 2.2.3背電極材料 19 2.3 類石墨氮化碳(Graphic Carbon Nitride, g-C3N4) 33 2.3.1材料之物理以及化學性質 33 2.3.2材料應用於光觸媒元件 34 2.3.3材料應用於敏化太陽能電池 39 第三章、 實驗藥品與方法 43 3.1 實驗藥品 43 3.2 實驗器材 45 3.3 實驗步驟 46 3.3.1FTO玻璃的清洗方法 47 3.3.2光電極─二氧化鈦薄膜製備 48 3.3.3量子點的製備與光電極的敏化 49 3.3.4SILAR法製作CdZnS鈍化層 50 3.3.5背電極的製備方法 51 3.3.6電解液的製備方法 53 3.3.7電池元件封裝 53 第四章、 結果與討論 55 4.1 光電極薄膜之鑑定 55 4.2 PART 1背電極CuxS與不同濃度的CuxS/g-C3N4材料鑑定 59 4.3 PART 1 CuxS與CuxS/g-C3N4 X光繞射鑑定(X-Ray Diffraction, XRD) 64 4.4 PART 1 CuxS與CuxS/g-C3N4 X射線光電子能譜鑑定(X-ray Photoelectron Spectroscopy, XPS) 65 4.5 PART 2背電極CuxSe與不同濃度的CuSSe/g-C3N4材料鑑定 66 4.6 PART 2 CuxSe與CuSSe/g-C3N4 X光繞射鑑定 70 4.7 PART 2 CuxSe與CuSSe/g-C3N4 X射線光電子能譜鑑定 71 4.8 光電轉換效率(Power Conversion Efficiency, PCE)鑑定 72 4.9 入射單色光子-電子轉化效率(monochromatic Incident Photon-to-electron Conversion Efficiency, IPCE) 78 4.10 半電池(dummy cell)之電化學阻抗(Electrochemical Impedance Spectroscopy, EIS) 80 4.11 Tafel量測分析 86 4.12 循環伏安法量測分析(Cyclic Voltammetry, CV) 88 4.13 太陽能電池穩定性檢測 92 第五章、 結論與未來展望 94

    1. IEA, Key World Energy Statistics 2020. 2020.
    2. Docampo, P.; Guldin, S.; Leijtens, T.; Noel, N. K.; Steiner, U.; Snaith, H. J., Lessons Learned: From Dye-Sensitized Solar Cells to All-Solid-State Hybrid Devices. 2014, 26 (24), 4013-4030.
    3. Kouhnavard, M.; Ikeda, S.; Ludin, N. A.; Ahmad Khairudin, N. B.; Ghaffari, B. V.; Mat-Teridi, M. A.; Ibrahim, M. A.; Sepeai, S.; Sopian, K., A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews 2014, 37, 397-407.
    4. Centurioni, E.; Iencinella, D., Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance. IEEE Electron Device Letters 2003, 24 (3), 177-179.
    5. Kim HS, L. C., Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. , Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012, 2 (591).
    6. Serrano-Lujan, L.; Espinosa, N.; Larsen-Olsen, T. T.; Abad, J.; Urbina, A.; Krebs, F. C., Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. 2015, 5 (20), 1501119.
    7. Vittal, R.; Ho, K.-C., Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 2017, 70, 920-935.
    8. Gao, N.; Huang, L.; Li, T.; Song, J.; Hu, H.; Liu, Y.; Ramakrishna, S., Application of carbon dots in dye-sensitized solar cells: A review. 2020, 137 (10), 48443.
    9. Yeh, M.-H.; Lee, C.-P.; Chou, C.-Y.; Lin, L.-Y.; Wei, H.-Y.; Chu, C.-W.; Vittal, R.; Ho, K.-C., Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta 2011, 57, 277-284.
    10. Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X., Zn-Cu-In-S-Se Quinary “Green” Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4 %. 2021, 60 (11), 6137-6144.
    11. Chen, Z.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M., Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Letters 2019, 4 (6), 1258-1259.
    12. Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L., Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. 2017, 29 (28), 1701073.
    13. Shin, G. S.; Zhang, Y.; Park, N.-G., Stability of Precursor Solution for Perovskite Solar Cell: Mixture (FAI + PbI2) versus Synthetic FAPbI3 Crystal. ACS Applied Materials & Interfaces 2020, 12 (13), 15167-15174.
    14. Mehdi, H.; Mhamdi, A.; Hannachi, R.; Bouazizi, A., MAPbBr3 perovskite solar cells via a two-step deposition process. RSC Advances 2019, 9 (23), 12906-12912.
    15. Snaith, H. J.; Petrozza, A.; Ito, S.; Miura, H.; Grätzel, M., Charge Generation and Photovoltaic Operation of Solid-State Dye-Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene-Based Sensitizer. 2009, 19 (11), 1810-1818.
    16. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. 2015, 348 (6240), 1234-1237.
    17. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
    18. Nozik, M. C. H. a. A. J., Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics 2006, 100 (074510).
    19. Sharma, D.; Jha, R.; Kumar, S., Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells 2016, 155, 294-322.
    20. Green, M., Solution routes to III–V semiconductor quantum dots. Current Opinion in Solid State and Materials Science 2002, 6 (4), 355-363.
    21. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical reviews 2010, 110 (11), 6873-90.
    22. Wang, Y.; Herron, N., Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry 1991, 95 (2), 525-532.
    23. Bera, D.; Qian, L.; Tseng, T.-K.; Holloway, P. H., Quantum Dots and Their Multimodal Applications: A Review. 2010, 3 (4), 2260-2345.
    24. Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; de Mello Donegá, C., Size Effects on Semiconductor Nanoparticles. In Nanoparticles: Workhorses of Nanoscience, de Mello Donegá, C., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 13-51.
    25. Nozik, A. J., Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 2002, 14 (1), 115-120.
    26. Fraser, D. B.; Cook, H. D., Film deposition with the Sputter Gun. 1977, 14 (1), 147-151.
    27. Davis, L., Properties of transparent conducting oxides deposited at room temperature. Thin Solid Films 1993, 236 (1), 1-5.
    28. Shanthi, E.; Banerjee, A.; Dutta, V.; Chopra, K. L., Electrical and optical properties of tin oxide films doped with F and (Sb+F). 1982, 53 (3), 1615-1621.
    29. Jean Desilvestro, M. G., * Ladislav Kavan,1 and; Jacques Moser, J. A., Highly Efficient Sensitization of Titanium Dioxide. J. Am. Chem. Soc. 1985, 107, 3.
    30. Wang, C.; Jiang, Z.; Wei, L.; Chen, Y.; Jiao, J.; Eastman, M.; Liu, H., Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach. Nano Energy 2012, 1 (3), 440-447.
    31. Esparza, D.; Bustos-Ramirez, G.; Carriles, R.; López-Luke, T.; Zarazúa, I.; Martínez-Benítez, A.; Torres-Castro, A.; De la Rosa, E., Studying the role of CdS on the TiO2 surface passivation to improve CdSeTe quantum dots sensitized solar cell. Journal of Alloys and Compounds 2017, 728, 1058-1064.
    32. Cánovas, E.; Moll, P.; Jensen, S. A.; Gao, Y.; Houtepen, A. J.; Siebbeles, L. D. A.; Kinge, S.; Bonn, M., Size-Dependent Electron Transfer from PbSe Quantum Dots to SnO2 Monitored by Picosecond Terahertz Spectroscopy. Nano Letters 2011, 11 (12), 5234-5239.
    33. Ramya, M.; Nideep, T. K.; Nampoori, V. P. N.; Kailasnath, M., The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. Journal of Materials Science: Materials in Electronics 2021, 32 (3), 3167-3179.
    34. Chen, C.; Dai, Q.; Miao, C.; Xu, L.; Song, H., Strontium titanate nanoparticles as the photoanode for CdS quantum dot sensitized solar cells. RSC Advances 2015, 5 (7), 4844-4852.
    35. Bang, J. H.; Kamat, P. V., Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe. ACS Nano 2009, 3 (6), 1467-1476.
    36. Li, L.; Yang, X.; Zhao, J.; Gao, J.; Hagfeldt, A.; Sun, L., Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. Journal of Materials Chemistry 2011, 21 (15), 5573-5575.
    37. Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Hagfeldt, A.; Sun, L., Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. Journal of the American Chemical Society 2011, 133 (22), 8458-8460.
    38. Prabakaran, S.; Nisha, K. D.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y., Synergistic effect and enhanced electrical properties of TiO2/SnO2/ZnO nanostructures as electron extraction layer for solar cell application. Applied Surface Science 2019, 498, 143702.
    39. Mali, S. S.; Kim, H.; Patil, P. S.; Hong, C. K., Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route. Dalton Transactions 2013, 42 (48), 16961-16967.
    40. Pawar, S. A.; Patil, D. S.; Lokhande, A. C.; Gang, M. G.; Shin, J. C.; Patil, P. S.; Kim, J. H., Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells. Optical Materials 2016, 58, 46-50.
    41. Chen, J.; Zhao, D. W.; Song, J. L.; Sun, X. W.; Deng, W. Q.; Liu, X. W.; Lei, W., Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications 2009, 11 (12), 2265-2267.
    42. Jiao, J.; Zhou, Z.-J.; Zhou, W.-H.; Wu, S.-X., CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application. Materials Science in Semiconductor Processing 2013, 16 (2), 435-440.
    43. Elibol, E.; Elibol, P. S.; Cadırcı, M.; Tutkun, N., Improving the performance of CdTe QDSSCs by chloride treatment and parameter optimization. Materials Science in Semiconductor Processing 2019, 96, 30-40.
    44. Li, Z.; Yu, L.; Liu, Y.; Sun, S., Efficient quantum dot-sensitized solar cell based on CdSxSe1-x/Mn-CdS/TiO2 nanotube array electrode. Electrochimica Acta 2015, 153, 200-209.
    45. Song, X.; Ma, Z.; Li, L.; Tian, T.; Yan, Y.; Su, J.; Deng, J.; Xia, C., Aqueous synthesis of alloyed CdSexTe1-x colloidal quantum dots and their In-situ assembly within mesoporous TiO2 for solar cells. Solar Energy 2020, 196, 513-520.
    46. Abate, M. A.; Chang, J.-Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182, 37-44.
    47. Han, M.; Jia, J.; Yu, L.; Yi, G., Fabrication and photoelectrochemical characteristics of CuInS2 and PbS quantum dot co-sensitized TiO2 nanorod photoelectrodes. RSC Advances 2015, 5 (64), 51493-51500.
    48. Li, T.-L.; Lee, Y.-L.; Teng, H., High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy & Environmental Science 2012, 5 (1), 5315-5324.
    49. Du, C.-F.; You, T.; Jiang, L.; Yang, S.-Q.; Zou, K.; Han, K.-L.; Deng, W.-Q., Controllable synthesis of ultrasmall CuInSe2 quantum dots for photovoltaic application. RSC Advances 2014, 4 (64), 33855-33860.
    50. Yu, X.-Y.; Liao, J.-Y.; Qiu, K.-Q.; Kuang, D.-B.; Su, C.-Y., Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition. ACS Nano 2011, 5 (12), 9494-9500.
    51. Ha, T. T.; Chi, C. H.; Vy, N. T.; Thoa, N. T. P.; Huynh, T. D.; Lam, Q. V., Improving the performance of QDSSCs based on Tio2/CdS (Silar)/CdSe(Colloid)/Zns(Silar) photoanodes. 2015, 34 (6), 1774-1779.
    52. Kershaw, S. V.; Jing, L.; Huang, X.; Gao, M.; Rogach, A. L., Materials aspects of semiconductor nanocrystals for optoelectronic applications. Materials Horizons 2017, 4 (2), 155-205.
    53. Halder, G.; Ghosh, A.; Parvin, S.; Bhattacharyya, S., Cation Exchange in Zn–Ag–In–Se Core/Alloyed Shell Quantum Dots and Their Applications in Photovoltaics and Water Photolysis. Chemistry of Materials 2019, 31 (1), 161-170.
    54. Yue, L.; Rao, H.; Du, J.; Pan, Z.; Yu, J.; Zhong, X., Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances 2018, 8 (7), 3637-3645.
    55. Kruse, O.; Rupprecht, J.; Mussgnug, J. H.; Dismukes, G. C.; Hankamer, B., Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences 2005, 4 (12), 957-970.
    56. Lee, Y.-S.; Gopi, C. V. V. M.; Eswar Reddy, A.; Nagaraju, C.; Kim, H.-J., High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer. New Journal of Chemistry 2017, 41 (5), 1914-1917.
    57. Archana, T.; Sreelekshmi, S.; Subashini, G.; Grace, A. N.; Arivanandhan, M.; Jayavel, R., The effect of graphene quantum dots/ZnS co-passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells. n/a (n/a).
    58. Subramanian, A.; Punnoose, D.; Rao, S. S.; Venkata Thulasi Varma, C.; Naresh, B.; Raman, V.; Kim, H.-J., Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New Journal of Chemistry 2017, 41 (13), 5942-5949.
    59. Liu, J.; Liu, J.; Wang, C.; Ge, Z.; Wang, D.; Xia, L.; Guo, L.; Du, N.; Hao, X.; Xiao, H., A novel ZnS/SiO2 double passivation layers for the CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides. Solar Energy Materials and Solar Cells 2020, 208, 110380.
    60. Li, Z.; Yu, L.; Wang, H.; Yang, H.; Ma, H., TiO2 Passivation Layer on ZnO Hollow Microspheres for Quantum Dots Sensitized Solar Cells with Improved Light Harvesting and Electron Collection. 2020, 10 (4), 631.
    61. Tanaka, E.; Robertson, N., Polyiodide solid-state dye-sensitized solar cell produced from a standard liquid I−/I3− electrolyte. Journal of Materials Chemistry A 2020, 8 (38), 19991-19999.
    62. He, B.; Tang, Q.; Liang, T.; Li, Q., Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A 2014, 2 (9), 3119-3126.
    63. Chakrapani, V.; Baker, D.; Kamat, P. V., Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (24), 9607-9615.
    64. Kim, H.; Hwang, I.; Yong, K., Highly Durable and Efficient Quantum Dot-Sensitized Solar Cells Based on Oligomer Gel Electrolytes. ACS Applied Materials & Interfaces 2014, 6 (14), 11245-11253.
    65. Srinivasa Rao, S.; Durga, I. K.; Kang, T.-S.; Kim, S.-K.; Punnoose, D.; Gopi, C. V. V. M.; Eswar Reddy, A.; Krishna, T. N. V.; Kim, H.-J., Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition. Dalton Transactions 2016, 45 (8), 3450-3463.
    66. Du, Z.; Pan, Z.; Fabregat-Santiago, F.; Zhao, K.; Long, D.; Zhang, H.; Zhao, Y.; Zhong, X.; Yu, J. S.; Bisquert, J., Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. The journal of physical chemistry letters 2016, 7 (16), 3103-11.
    67. Yuan, B.; Gao, Q.; Zhang, X.; Duan, L.; Chen, L.; Mao, Z.; Li, X.; Lü, W., Reduced graphene oxide (RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. Electrochimica Acta 2018, 277, 50-58.
    68. Ahmad, W.; Chu, L.; Al-bahrani, M. R.; Yang, Z.; Wang, S.; Li, L.; Gao, Y., Formation of short three dimensional porous assemblies of super hydrophobic acetylene black intertwined by copper oxide nanorods for a robust counter electrode of DSSCs. RSC Advances 2015, 5 (45), 35635-35642.
    69. Raksa, P.; Nilphai, S.; Gardchareon, A.; Choopun, S., Copper oxide thin film and nanowire as a barrier in ZnO dye-sensitized solar cells. Thin Solid Films 2009, 517 (17), 4741-4744.
    70. Zhang, Q.; Jin, Z.; Li, F.; Xia, Z.; Yang, Y.; Xu, L., First application of CoO nanorods as efficient counter electrode for quantum dots-sensitized solar cells. Solar Energy Materials and Solar Cells 2020, 206, 110307.
    71. Shanmugapriya, T.; Balavijayalakshmi, J., Efficiency Studies of Galinsoga Parviflora Pigments as a Sensitizer in Pt Free Graphene Oxide/Nickel Oxide Counter Electrode: Dye Sensitized Solar Cell Applications. Journal of Cluster Science 2020.
    72. Kim, H.-J.; Suh, S.-M.; Rao, S. S.; Punnoose, D.; Tulasivarma, C. V.; Gopi, C. V. V. M.; Kundakarla, N.; Ravi, S.; Durga, I. K., Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry 2016, 777, 123-132.
    73. Deng Minghui , H. S., Zhang Quanxin , Li Dongmei , Luo Yanhong , Shen Qing , Toyoda Taro , Meng Qingbo, Screen-printed Cu2S-based Counter Electrode for Quantum-dot-sensitized Solar Cell. Chem. Lett. 2010, 39, 3.
    74. Ke, W.; Fang, G.; Lei, H.; Qin, P.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X., An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells. Journal of Power Sources 2014, 248, 809-815.
    75. Mani, A. D.; Deepa, M.; Xanthopoulos, N.; Subrahmanyam, C., Novel one pot stoichiometric synthesis of nickel sulfide nanomaterials as counter electrodes for QDSSCs. Materials Chemistry and Physics 2014, 148 (1), 395-402.
    76. Huo, J.; Zheng, M.; Tu, Y.; Wu, J.; Hu, L.; Dai, S., A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochimica Acta 2015, 159, 166-173.
    77. Banerjee, A.; Upadhyay, K. K.; Bhatnagar, S.; Tathavadekar, M.; Bansode, U.; Agarkar, S.; Ogale, S. B., Nickel cobalt sulfide nanoneedle array as an effective alternative to Pt as a counter electrode in dye sensitized solar cells. RSC Advances 2014, 4 (16), 8289-8294.
    78. Zhang, H.; Wang, C.; Peng, W.; Yang, C.; Zhong, X., Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy 2016, 23, 60-69.
    79. Lü, X.; Shen, J.; Wu, Z.; Wang, J.; Xie, J., Deposition of Ag nanoparticles on g-C3N4 nanosheet by N,N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. Journal of Materials Research 2014, 29 (18), 2170-2178.
    80. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z., Nanoporous Graphitic-C3N4@Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society 2011, 133 (50), 20116-20119.
    81. She, X.; Wu, J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y.; Nie, K.; Liu, Y.; Yang, Y.; Rodrigues, M.-T. F.; Vajtai, R.; Lou, J.; Du, D.; Li, H.; Ajayan, P. M., High Efficiency Photocatalytic Water Splitting Using 2D α-Fe2O3/g-C3N4 Z-Scheme Catalysts. 2017, 7 (17), 1700025.
    82. Tong, Z.; Yang, D.; Xiao, T.; Tian, Y.; Jiang, Z., Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chemical Engineering Journal 2015, 260, 117-125.
    83. Huo, Y.; Zhang, J.; Dai, K.; Li, Q.; Lv, J.; Zhu, G.; Liang, C., All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2019, 241, 528-538.
    84. Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K., Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. The Journal of Physical Chemistry C 2009, 113 (12), 4940-4947.
    85. Ji, H.; Chang, F.; Hu, X.; Qin, W.; Shen, J., Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chemical Engineering Journal 2013, 218, 183-190.
    86. Yan, S. C.; Li, Z. S.; Zou, Z. G., Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir 2009, 25 (17), 10397-10401.
    87. Zhang, G.; Zhang, J.; Zhang, M.; Wang, X., Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry 2012, 22 (16), 8083-8091.
    88. Dong, F.; Wang, Z.; Sun, Y.; Ho, W.-K.; Zhang, H., Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of Colloid and Interface Science 2013, 401, 70-79.
    89. Cao, S.; Low, J.; Yu, J.; Jaroniec, M., Polymeric Photocatalysts Based on Graphitic Carbon Nitride. 2015, 27 (13), 2150-2176.
    90. Wang, G.; Zhang, J.; Kuang, S.; Zhang, W., Enhanced Electrocatalytic Performance of a Porous g-C3N4/Graphene Composite as a Counter Electrode for Dye-Sensitized Solar Cells. 2016, 22 (33), 11763-11769.
    91. Li, W.; Chen, Q.; Zhong, Q., One-pot fabrication of mesoporous g-C3N4/NiS co-catalyst counter electrodes for quantum-dot-sensitized solar cells. Journal of Materials Science 2020, 55 (24), 10712-10724.
    92. Gong, J.; Liang, J.; Sumathy, K., Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012, 16 (8), 5848-5860.
    93. Hwang, I.; Yong, K., Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. 2015, 2 (5), 634-653.
    94. Wu, C.; Jia, L.; Guo, S.; Han, S.; Chi, B.; Pu, J.; Jian, L., Open-Circuit Voltage Enhancement on the Basis of Polymer Gel Electrolyte for a Highly Stable Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2013, 5 (16), 7886-7892.
    95. Katoh, R.; Furube, A., Electron injection efficiency in dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014, 20, 1-16.
    96. Ho, C.; Raistrick, I. D.; Huggins, R. A., Application of A‐C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. Journal of The Electrochemical Society 1980, 127 (2), 343-350.
    97. Kelsall, G. H., Electrochemical Removal of H2S. Encyclopedia of Applied Electrochemistry, 2014, 593.
    98. Deng, J.; Zhang, P.; Li, L.; Gou, Y.; Fang, J.; Lei, Y.; Song, X.; Yang, Z., Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a CuxS counter electrode, and the influence on performance of quantum-dot-sensitized solar cells. Journal of Colloid and Interface Science 2020, 579, 805-814.
    99. Bilal, S., Cyclic Voltammetry. In Encyclopedia of Applied Electrochemistry, Kreysa, G.; Ota, K.-i.; Savinell, R. F., Eds. Springer New York: New York, NY, 2014; pp 285-289.

    無法下載圖示 全文公開日期 2026/09/16 (校內網路)
    全文公開日期 2026/09/16 (校外網路)
    全文公開日期 2026/09/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE