簡易檢索 / 詳目顯示

研究生: 田立德
Lester - Chan Lik Teck
論文名稱: 盤尼西林發酵程序控制設計
Control Design for Penicillin Fermentation
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 錢義隆
I-Lung Chien
王逢盛
Feng-Sheng Wang
錢玉樹
Yu-Shu Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 103
中文關鍵詞: 差值進化演算法模式預測控制最適化饋料式最適化
外文關鍵詞: differential evolution, model predictive control, optimization, fed-batch optimization
相關次數: 點閱:258下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   盤尼西林是目前最廣泛應用的抗生素之ㄧ,盤尼西林通常以饋料批次生產。而饋料批次操作具有挑戰性因為它能提供進料基質不同的饋料方式,已達到生產的最適化需求,另外從控制的觀點,饋料批次的最適化進料方式是動態問題。
      本研究的重點強調以模式為基礎的最適化控制設計,期望能補償系統因有參數變動,不確定等因素的影響原最適化的控制操作結果。本文主要利用差值進化法為最適化的主要工作,執行各項的最適化尋優工作,之後討論非線性輸出-輸入,適應控制和模式預測控制的設計與控制的成效。比較以上各種控制器在參數變動下的韌性控制結果。結果得到模式預測控制可以得到較滿意的結果。


    Penicillin is one of the most widely used antibiotics and is used for many Gram-positive bacterial infections. The production of penicillin is usually operated in fed-batch mode. The optimization of a fed-batch process is challenging because it is a dynamical optimization process. In this work, the suitability of differential evolution as an optimization approach tested. Inspired by model predictive control, an algorithm was proposed to handle disturbance to a system. This incorporated differential evolution into the algorithm. Different cases were presented and the algorithm was able to perform satisfactorily.

    Contents Abstract I Acknowledgement II Contents III List of Figures V List of Table VIII Chapter 1 1 Introduction 1 1.1 Fed-Batch Fermentation 1 1.1 Literature Review 3 1.2 History of Penicillin 5 1.4 Motivation 8 1.5 Thesis Outline 8 Chapter 2 9 Problem Formulation 9 2.1 Penicillin production 9 2.2 Mechanistic Model for penicillin production 9 2.3 Problem definition 12 Optimization 15 3.1 Optimization Methods 15 3.1.1 Indirect methods 15 3.1.2 Deterministic direct methods 16 3.1.3 Stochastic direct methods 16 3.2 Differential evolution 19 3.2.1 Initialization 21 3.2.2 Mutation 22 3.2.3 Crossover 22 3.2.4 Selection 23 3.2.5 Schematic of DE 24 3.3 Optimization results and discussion 25 3.3.1 To find the final time tf 25 3.3.2 Application of DE in optimization of penicillin production 27 Chapter 4 38 4.1 Model Predictive Control (MPC) 38 4.1.1 Introduction to MPC 38 4.1.2 DE based MPC 41 4.2 Input-Output linearization method (IO) 43 4.2.1 Introduction to Input-Output 43 4.3 Results and Discussions 44 4.3.1 Determine the Control Criteria 44 4.3.1.1 Number of steps for MPC 44 4.3.1.2 Determine the state for best tracking 47 4.3.1.2.1 Biomass as output, 47 4.3.1.2.2 Substrate as output, 49 4.3.1.2.3 Volume as output, 51 4.3.2 Test Disturbance 53 Chapter 5 69 Conclusions 69 Future work 70 Nomenclature 71 References 73 Appendix A 76 Appendix B 80 Appendix C 89

    References
    [ 1 ] Bajpai R.K., Reuß, M., 1980. A Mechanistic Model for Penicillin Production. Journal of Chemical Technology & Biotechnology 30, 332-344.
    [ 2 ] Bajpai R.K., Reuß, M., 1981. Evaluation of Feeding Strategies in Carbon-Regulated Secondary Metabolite Production through Mathematical Modelling. Biotechnology and Bioengineering 23,717-738.
    [ 3 ] Banga, J.R., Alonso, A.A., Singh, R.P., 1997. Stochastic Dynamic Optimization of Batch and Semicontinuous Bioprocesses. Biotechnology Programming 13, 326-335.
    [ 4 ] Banga, J.R., Canto, E.B., Moles, C.G., Alonso, A.A., 2005. Dynamic Optimization of Bioprocesses: Efficient and Robust Numerical Strategies. Journal of Biotechnology 117, 407-419.
    [ 5 ] Birol, G., Ündey, C., Çinar, A. 2000. A Modular Simulation Package for Fed-Batch Fermentation: Penicillin Production. Computers and Chemical Engineering 26, 1553-1565.
    [ 6 ] Chiou, J.P., Wang, F.S., 1999. Hybrid Method of Evolutionary Algorithms for Static and Dynamic Optimization Problems with Application to a Fed-Batch Fermentation Process. Computers and Chemical Engineering 23, 1277-1291.
    [ 7 ] Cuthrell, J. E., Biegler, L. T., 1989. Simultaneous Optimization and Solution Methods for Batch Reactor Control Profiles. Computers and Chemical Engineering 13, 49-62.
    [ 8 ] Dadebo, S. A., McAuley, K. B., 1995. Dynamic Optimization of Constrained Chemical Engineering Problems Using Dynamic Programming. Computers and Chemical Engineering 19, 513-525.

    [ 9 ] Edgar, T.F., Himmelblau, D.M., 1989. Optimization of Chemical Processes, International Edition. McGraw-Hill Book Co, Singapore.
    [ 10 ]Garcia C.E, Prett D.M., Morari M., 1989. Model Predictive Control: Theory and Practice - A Survey. Automatica 25, 335-348.
    [ 11 ] Isidori, A., 1995. Nonlinear Control Systems, Third Edition. Springer-Verlag London Limited.

    [ 12 ] Kapadi, M.D., Gudi, R.D., 2004. Optimal Control of Fed-Batch Fermentation Involving Multiple Feeds Using Differential Evolution. Process Biochemistry 39, 1709-1721.
    [ 13 ] Karaboğa, D., Ökdem, S., 2004. A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm. Turkish Journal of Electrical Engineering & Computer Sciences 12, 53-60
    [ 14 ] Kosanovich, K.A., Piovoso, M.J., Rokhlenko V., Guez, A., 1995. Nonlinear Adaptive Control with Parameter Estimation of a CSTR. Journal of Process Control 5, 137-148.
    [ 15 ] Lim, H. C., Tayeb, Y. J., Modak, J. M., Bonte, P., 1986. Computational Algorithms for Optimal Feed Rates for a Class of Fed-Batch Fermentation: Numerical Results for Penicillin and Cell Mass Production. Biotechnology and Bioengineering 28, 1408-1420.
    [ 16 ] Luus, R., 1993. Optimization of Fed-Batch Fermentors by Iterative Dynamic Programming. Biotechnology and Bioengineering 41, 599-602.
    [ 17 ] Luus, R., Hennessy D., 1999. Optimization of Fed-Batch Reactors by the Luus-Jaakola Optimization Procedure. Industrial and Engineering Chemistry Research 38, 1948-1955.
    [ 18 ] Modak, J. M., Lim, H. C., Tayeb, Y. J., 1985. General Characteristics of Optimal Feed Rate Profiles for Various Fed-Batch Fermentation Processes. Biotechnology and Bioengineering 28, 1396-1407.
    [ 19 ] Modak, J.M., 1993. Choice of Control Variable for Optimization of Fed-Batch Fermentation. The Chemical Engineering Journal 52, B59-69.
    [ 20 ]Propoi, A.I., 1963. Use of LP Methods for Synthesizing sampled-data automatic systems. Automation and Remote Control 24, 837.
    [ 21 ] Rani, K.Y., Rao, V.S., 1999. Control of Fermenters – A Review. Bioprocess Engineering 21, 77-88.
    [ 22 ] Riascos, C.A.M., Pinto, J.M., 2004. Optimal Control of Bioreactors: A Simultaneous Approach for Complex Systems. Chemical Engineering Journal 99, 23-34.
    [ 23 ]Richalet, J. A., Rault A., Testud J. L. and Papon, J., 1978. Model Predictive Heuristic Control: Applications to An Industrial Process. Automatica, 14, 413-428.
    [ 24 ] San, K., Stephanopoulos, G., 1989. Optimization of Fed-Batch Penicillin Fermentation: A Case of Singular Optimal Control with State Constraints. Biotechnology and Bioengineering 34, 72–78.
    [ 25 ] Slotine, J.J.E., Li, W.P., 1991. Applied Nonlinear Control. Prentice-Hall, Inc.-
    [ 26 ] Smets I.Y., Claes, J.E., November, E.J., Bastin, G.P.,Impe, J.F.V., 2004. Optimal Adaptive Control of (Bio)chemical Reactors: Past, Present and Future. Journal of Process Control 14, 795-805.
    [ 27 ] Storn, R., Price, K., 1997. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359.
    [ 28 ] Zadeh, L. A. and Whelan B. H. 1962. On Optimal Control and Linear Programming. IRE Transactions on Automatic Control, 7, 45.

    無法下載圖示 全文公開日期 2011/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE