簡易檢索 / 詳目顯示

研究生: 許揚聖
Yang-sheng Syu
論文名稱: 利用頻域之脈衝相減法於超音波顯影劑偵測
Detection of Ultrasonic Contrast Agent with Frequency-Domain Pulse Subtraction
指導教授: 沈哲州
Che-chou Shen
口試委員: 黃騰毅
Teng-yi Huang
王士豪
Shih-hao Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 超音波影像非線性成像顯影劑偵測脈衝相減法線性與非線性
外文關鍵詞: Ultrasound Imaging, Non-linear Imaging, Detection of Contrast Agent, Pulse Subtraction, Linear and Non-linear
相關次數: 點閱:238下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

醫用超音波成像系統可將回音信號產生的機制區分為線性與非線性兩種系統,線性系統產生的回音信號會具有加法特性,亦即發射數種波形所產生之回音信號的總合會等於數種波形先總和再發射所產生之回音信號,然而非線性系統則否。在臨床使用上由於一般人體組織產生的信號偏屬於線性非時變系統,而用以注入血液提昇灌流區信號強度的超音波顯影劑(ultrasound contrast agents)則歸屬於非線性時變系統,故可使用脈衝相減法(pulse subtraction)對超音波顯影劑進行非線性偵測促使臟器腫瘤或心臟腔室等顯影劑灌流區域之影像對比有效提升。基於前述線性系統的加法特性,在本研究中我們嘗試從頻域上進行發射信號的分割以產生脈衝相減法之發射脈衝序列來區分線性組織信號與非線性顯影劑信號,首先設計一高斯封包的載波,稱之為全波形,再將全波形由低通濾波器進行分割程序後產生兩個總和會等於全波形之子波形,且將全波形之回傳信號與加總後的各子波形之回傳信號經相減後所殘留之信號即為超音波非線性系統的成像特徵。本研究之模擬分析與實驗結果指出,該方法確實可以有效區別超音波成像中的組織與顯影劑之區域,且區別能力和pulse inversion amplitude modulation (PIAM) 與pulse subtraction time delay (PSTD) 相差不多,故此藉由該設計方式而提出頻域之脈衝相減法以提升醫用超音波之非線性顯影劑區域的偵測能力。


The medical ultrasound imaging system can be utilized to differentiate between linear echo and non-linear echo. In linear system, the addition property holds and thus the sum of the echoes from several transmit waves are equal to the echo from the sum of these transmit waves. In non-linear system, however, the addition property fails and residual signal will be produced when the sum of the echoes is subtracted from the echo from the sum of transmit waves. Clinically, the acoustic response from native tissue resembles the linear system while that from ultrasound contrast agent (UCA) appears to be more non-linear. Therefore, the pulse subtraction (PS) method can highlight the UCA perfused region such as the myocardium and tumor by using the residual signal from nonlinear contrast responses for imaging. In this study, since the nonlinear oscillation of UCA is highly sensitive to the impinging frequency, the frequency-domain design of the transmit waveforms in the PS method was proposed by spectrally extracting subband components from the original wave. Then, the echoes from the sub-waves are subtracted from the echo from the original wave to generate specific residual signal for the non-linear microbubbles. Our simulation and experimental results indicate that the residual signal can efficiently distinguish bubbles from background tissue. The performance of our frequency-domain pulse subtraction method (FDPS) is comparable to pulse inversion amplitude modulation (PIAM) and pulse subtraction time delay (PSTD) in terms of CTR improvement.

致謝........................................................I 中文摘要...................................................II Abstract...................................................IV 目錄.......................................................VI 圖目錄.....................................................IX 表目錄...................................................XIII 第一章 緒論.................................................1 1-1 醫用超音波系統簡介......................................1 1-2 醫用超音波之基本原理與特性..............................3 1-3 超音波之顯影劑成像......................................9 1-3-1 組織之非線性響應.....................................11 1-3-2 顯影劑之非線性響應...................................13 1-3-3 線性與非線性成像.....................................17 1-4 超音波顯影劑之非線性偵測技術與相關文獻.................18 1-5 研究動機與目標.........................................23 1-6 論文架構...............................................24 第二章 研究原理............................................25 2-1 組織與顯影劑之特性差異.................................25 2-1-1 線性與非線性系統.....................................25 2-1-2 時變與非時變系統.....................................27 2-2 脈衝相減法之說明.......................................28 2-2-1 時域之脈衝相減法.....................................28 2-2-2 頻域之脈衝相減法.....................................33 第三章 研究方法............................................36 3-1 模擬方法...............................................36 3-1-1 模擬目的與波形設計...................................36 3-1-2 組織傳遞之模擬.......................................37 3-1-3 顯影劑震盪之模擬.....................................40 3-2 實驗架構...............................................42 3-2-1 由不同截止頻帶的濾波器所設計波形之實驗...............44 3-2-2 比較FDPS、PIAM以及PSTD之實驗.........................46 第四章 研究結果............................................48 4-1 模擬結果與分析.........................................48 4-1-1 由不同截止頻帶之濾波器所設計波形的模擬結果...........48 4-1-2 子波形的頻域成分重疊的量多與寡於結果之影響...........52 4-1-3 FDPS作用於不同共振頻率之氣泡的模擬結果...............54 4-1-4 FDPS與FDPIPS模擬結果之探討...........................56 4-1-5 比較FDPS、PIAM以及PSTD三種方法之模擬結果.............59 4-2 實驗結果...............................................62 4-2-1 由不同截止頻帶之濾波器所設計波形的實驗結果...........62 4-2-2 比較FDPS、PIAM以及PSTD三種方法之實驗結果.............64 第五章 討論、結論與未來工作................................68 5-1 討論...................................................68 5-2 結論...................................................72 5-3 未來工作...............................................74 參 考 文 獻................................................75

[1] Dussik, K.T. “On the possibility of using ultrasound waves as a diagnostic aid,” Neurol. Psychiat. 174:153-168, 1942.

[2] P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate and N. De Jong, “Ultrasound contrast imaging: current and new potential methods,” Ultrasound Med. Biol., vol. 26, no. 6, pp. 965-975, 2000.

[3] Jong Seob Jeong, Jin Ho Chang, and K. Kirk Shung, “Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 9, September, pp.1913-1922, 2009.

[4] 沈哲州,「超音波組織非線性影像分析」,國立台灣大學碩士論文

[5] Gabriel Montaldo, Mickaël Tanter, Jérémy Bercoff, Nicolas Benech, and Mathias Fink “Coherent Plane-Wave Compounding for Very High Frame Rate Ultrasonography and Transient Elastography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 3, March 2009.

[6] Jose R. Sanchez, and Michael L. Oelze, “An Ultrasonic Imaging Speckle-Suppression and Contrast-Enhancement Technique by Means of Frequency Compounding and Coded Excitation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 7, July 2009.

[7] Juan L. mateo, Antonio Fernandez-Caballero, “Finding out general tendencies in speckle noise reduction in ultrasound images,” Expert Systems with Applications 36 (2009) 7786-7797.

[8] N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.

[9] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., Vol.26, No. 1, pp. 93–104, 2000

[10] P. H. Chang, K. K. Shung, S. J. Wu et al., “Second harmonic imaging and harmonic Doppler measurements with Albunex,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 6, pp. 1020–1027, Nov. 1995.

[11] N. de Jong, M. Emmer, A van Wamel, and M. Versluis, ”Ultrasonic characterization of ultrasonic contrast agents,” Med Biol Eng Comput (2009) 47:861–873.

[12] Meng-Xing Tang, and Robert J. Eckersley, “Nonlinear Propagation of Ultrasound Through Microbubble Contrast Agents and Implications for Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, no. 12 , pp. 2406-2415, December 2006.

[13] C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.

[14] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, March 1983.

[15] 王裕鈞,「使用三倍頻發射相位法於組織諧波信號分析」,國立台灣科技大學碩士論文,民國九十六年。

[16] Ayache Bouakaz, Michel Versluis, Jerome Borsboom, and Nico de Jong, ”Radial Modulation of Microbubbles for Ultrasound Contrast Imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 11, November, pp.2283-2290, 2007.

[17] Marcia Emmer, Hendrik J. Vos, Michel Versluis, and Nico de Jong, “Radial Modulation of Single Microbubbles” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, no. 11, November, pp.2370-2379, 2009.

[18] D. E. Goertz, A. Needles, R. Karshafian, A. S. Brown, P. N. Burns, and F. Stuart Foster, “High frequency nonlinear B-scan imaging of microbubble contrast agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, no. 1, pp. 65–78, Jan. 2005.

[19] F. Forsberg *, W.T. Shi, B.B. Goldberg, “Subharmonic imaging of contrast agents,” Ultrasonics 38 pp. 93–98,2000

[20] G.Yanjun, Z. Dong and G. Xiufen, “Subharmonic and ultraharmonic emissions based on the nonlinear oscillation of encapsulated microbubbles in ultrasound contrast agents,” Chinese Science Bulletin Vol. 50 No. 18 pp.1975—1978 ,2005

[21] Elena Biagi, Luca Breschi, Enrico Vannacci, and Leonardo Masotti Subharmonic "Emissions from Microbubbles: Effect of the Driving Pulse Shape," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, no. 11, November 2006

[22] R. Basude, M. A. Wheatley, “Generation of ultraharmonics in surfactant based ultrasound contrast agent: use and advantages,” Ultrasonics 39 (2001) 437-444.

[23] Francesco Guidi, Hendrik J. Vos, Riccardo Mori, Nico de Jong, Associate, and Piero Tortoli, “Microbubble Characterization Through Acoustically Induced Deflation,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 57, no. 1, January 2010.

[24] R. Bekeredjian, P.A. Grayburn and R.V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol., Vol. 45, No.3, pp. 329-335, 2005.

[25] 賴寬裕,「以穴蝕效應為主之超音波治療:誘發與偵測」,國立台灣大學碩士論文

[26] F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound Med. Biol., vol. 25, no. 6, pp. 889-894, 1999.

[27] T. Christopher, ”Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging,” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 44 ,pp. 125–139, 1997.

[28] N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, pp. 72-82, 1996.

[29] W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles, ” Ultrasound Med. Biol., vol. 26, no. 1, pp. 93-104, 2000.

[30] C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.

[31] C. C. Shen and P. C. Li, “Pulse-inversion-based fundamental imaging for contrast detection,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 50, pp.1124-1133, 2003.

[32] S. Krishnan, J. D. Hamilton and M. O’Donnell, “Suppression of propagating second harmonic in ultrasound contrast imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp.704-711, 1998.

[33] R. J. Eckersley, C. T. Chin, and P. N. Burns “Optimising phase and amplitude modulation schemes foe imaging microbubble contrast agents at low acoustic power,” Ultrasound in Med. & Bio.l, vol. 31, no. 2, pp. 213-219, 2005.

[34] P. J. Phillips, “Contrast pulse sequences (CPS): imaging nonlinear microbubbles,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1739-1745, 2001.

[35] Jerome M. G. Borsboom, Ayache Bouakaz, and Nico de Jong, “Pulse Subtraction Time Delay Imaging Method for Ultrasound Contrast Agent Detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, pp.1151-1158, 2009.

[36] William T. Shi+, Christopher S. Hall+ and Patrick G. Rafter, “Contrast Resonance Imaging with Embedded Ultrasound Imaging Pulses,” IEEE Ultrasonics Symposium, pp. 212-215, 2006.

[37] William T. Shi+, Christopher S. Hall+ and Patrick G. Rafter, “Contrast Resonance Imaging with Microbubble Resonance Enhancement and Suppression,” IEEE Ultrasonics Symposium, pp. 1643-1646, 2006.

[38] Cormac Cannon, John Hannah and Steve McLaughlin “Segmented Motion Compensation for Complementary Coded Ultrasonic Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 57, pp.1139-1150, 2010.

[39] Y .-S. Lee and M. F. Hamilton, “Time-domain modeling of pulsed finite-amplitude sound beams,” J. Acoust. Soc. Am., vol. 97, no. 2, pp. 906–917, 1995.

[40] N . de Jong, R. Cornet, and C. T. Lancée, “Higher harmonics of vibrating gas filled microspheres. Part one: Simulations,” Ultrasonics, vol. 32, no. 6, pp. 447–453, 1994.

[41] Vos H J, Guidi F, Boni E and Tortoli P, “Method for microbubble characterization using primary radiation force,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp.1333-1345, 2007.

[42] S.M. van der Meer, M. Versluis, D. Lohse C.T. Chin, A. Bouakaz, N. de Jong, “The resonance frequency of SonoVue™ as observed by high-speed optical imaging,” IEEE Ultrasonics Symposium, pp. 343-.345, 2004.

QR CODE