簡易檢索 / 詳目顯示

研究生: 李玫芳
Mei-Fang Li
論文名稱: 電噴灑製備多型態之紫草素/靛菁綠海藻酸鹽微氣泡(SHK/ICG ALG MB) 載體系統與其透過超音波誘導之聲動療法與近紅外光光熱治療腫瘤細胞效果與潛力
Synthesis of Multiple Morphology SHK, ICG- Alginate Microbubble and its Ultrasound application in Ovarian Tumor Therapy
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 鄭詠馨
Yung-Hsin Cheng
王毓淇
Yu-Chi Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: 卵巢癌紫草素靛菁綠海藻酸鈉微氣泡藥物載體聲動力治療光熱反應超音波成像
外文關鍵詞: ovarian cancer, shikonin, indocyanine green, alginate, microbubbles, drug carrier, sonodynamic therapy, photothermal effect, ultrasound imaging
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將討論使用電噴灑系統將抗癌藥物紫草素(shikonin)以及多功能螢光染劑靛氰綠(ICG)包覆於海藻酸鹽中,製備而成的多型態且多功能的藥物載體顆粒SHK/ICG ALG MB,測量藥物載體顆粒的藥物釋放效果,對卵巢癌細胞 SKOV3 及 CP70 進行細胞毒殺實驗,對其近紅外光升溫效果進行評估後,對卵巢癌細胞 SKOV3 及 CP70 進行光熱效應細胞毒殺實驗,並與無光熱效應之細胞毒殺效果做比較,從而證明其可作為光熱效應之光敏劑。測試ICG 於超音波激發下於細胞內產生之ROS量檢測,從而證明其可作為聲動力治療之聲敏劑。最後對其超音波造影進行測試,從而證明此藥物載體可做為超音波成像之顯影劑。
    研究結果顯示 相較於 單純使用紫草素/靛菁綠海藻酸鹽微氣泡載體的細胞毒殺效果,透過近紅外光照射後 紫草素/靛菁綠海藻酸鹽微氣泡載體產生光熱效應,有更好的細胞毒殺效果,當 紫草素濃度於5.13 μM時,SKOV3 與 CP70細胞存活率皆低於 20%,細胞毒殺效果甚至比 游離型紫草素溶液來的好,證明其光熱治療的效果。且靛菁綠透過超音波激發後使細胞內產生ROS,並具有濃度依賴性效應,證明此微氣泡載體應用於生動力治療之潛力。另外此微氣泡載體於超音波造影中展現出明顯的高對比性,證明此微氣泡載體應用於超音波成像顯影之潛力。


    In this study we used electrospraying to encapsulate the anticancer drug shikonin (SHK) and the multifunctional fluorescent dye indocyanine green (ICG) within alginate to preparate a versatile and multifunctional drug delivery system, SHK/ICG ALG MB. Then particles will be characterized for their drug release profile. The cytotoxicity of the particles will be evaluated against ovarian cancer cells SKOV3 and CP70. Additionally, the photothermal effect of the particles under near-infrared light (NIR) will be assessed, and the photothermal cytotoxicity against SKOV3 and CP70 cells will be compared with the cytotoxicity in the absence of photothermal effect. The generation of ROS in cells stimulated by ICG under ultrasound exposure will be measured. Finally, the particles will be tested for ultrasound (US) imaging.
    The results showed that compared to using shikonin/indocyanine green (ICG) alginate microbubble (SHK/ICG ALG MB) alone, the SHK/ICG ALG MB exposed to NIR, resulting in enhanced cytotoxicity. When the SHK concentration was 5.13 μM, the cell viability of both SKOV3 and CP70 cells was below 20%, even have better cytotoxicity compared to free form SHK and demonstrate the efficacy of photothermal therapy. Moreover, ICG induced the production of ROS within cells when stimulated by US, exhibiting a concentration-dependent effect and demonstrating the potential of this MB for sonodynamic therapy. Additionally, the MB showed significant contrast enhancement in US imaging, indicating its potential for use as a contrast agent in ultrasound imaging.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 中英文縮寫對照表 XII 第一章 緒論 1 一、 前言 1 二、 研究動機與目的 2 第二章 文獻回顧 3 一、 藥物載體系統 3 (一) 藥物載體 3 (二) 電噴灑 4 二、 海藻酸鹽應用於藥物載體 5 (一) 海藻酸鹽簡介 5 (二) 海藻酸鹽化學結構與性能 5 (三) 聚合原理 6 三、 紫草素 8 (一) 簡介 8 (二) 癌症治療相關應用 9 四、 靛菁綠 10 (一) 靛菁綠螢光顯影系統 10 (二) 輔助治療相關應用 11 五、 微氣泡載體系統 13 (一) 超音波造影 13 (二) 超音波介導藥物輸送 13 第三章 實驗內容 15 一、 實驗設計與規劃 15 二、 實驗藥品與儀器設備 17 (一) 藥品與材料 17 (二) 儀器與設備 18 三、 SHK/ICG ALG MB載體系統之製備 19 四、 實驗材料分析 22 (一) 型態分析 22 (二) 粒徑分析 22 (三) 掃描式電子顯微鏡(SEM)分析 23 (四) 元素分析(EDX ) 24 五、 藥物包覆率與藥物釋放 25 (一) SHK / ICG ALG MB藥物包覆率 26 (二) SHK / ICG ALG MB藥物釋放 26 六、 細胞培養 28 (一) 細胞解凍 30 (二) 細胞繼代 31 (三) 細胞計數方法 31 (四) 細胞保存方法 32 七、 細胞存活率測試 33 (一) 紫草素細胞毒性測試( Free form ) 34 (二) 靛菁綠細胞毒性測試( Free form ) 36 (三) SHK / ICG ALG MB細胞毒性測試 37 八、 ICG 進紅外光光熱效應 39 (一) Free form ICG 升溫曲線 39 (二) SHK / ICG ALG MB 升溫曲線 39 (三) SHK / ICG ALG MB光熱效應細胞毒性測試 39 九、 細胞內ROS含量檢測 42 (一) DCFH-DA螢光探針原理 42 (二) 實驗設計及步驟 43 十、 SHK/ICG ALG MB超音波影像測試 44 十一、 實驗統計分析方法 45 第四章 實驗結果與討論 46 一、 SHK/ICG ALG MB材料分析 46 (一) SHK/ICG ALG MB型態分析 46 (二) 微氣泡載體Image J粒徑分析 47 (三) 掃描電子顯微鏡( SEM )分析 48 (四) 元素分析( EDX ) 48 二、 藥物包覆率與藥物釋放曲線 49 (一) 藥物包覆率 49 (二) 藥物釋放 49 三、 細胞存活率分析(MTT assay) 51 (一) 紫草素毒性分析( Free form ) 51 (二) 吲哚菁綠毒性分析( Free form ) 51 (三) SHK / ICG ALG MB 毒性分析 51 四、 ICG 體外光熱效應評估 52 (一) Free form ICG 近紅外光升溫效果評估 52 (二) SHK/ICG ALG MB近紅外光升溫效果評估 52 (三) SHK/ICG ALG MB近紅外光熱效應細胞毒性測試 53 五、 細胞內ROS含量分析 54 六、 SHK/ICG ALG MB超音波影像 55 第五章 結論 56 附件與圖片 57 參考文獻 86

    [1]Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009 Sep 15;80(6):609-16.
    [2]Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol. 2017 Nov 1;28(suppl_8):viii61-viii65.
    [3]Yohei Kawabata, Koichi Wada, Manabu Nakatani, Shizuo Yamada, Satomi Onoue,Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, International Journal of Pharmaceutics, Volume 420, Issue 1, 2011, Pages 1-10.
    [4]Zahra Norouzi, Majid Abdouss, Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system, International Journal of Biological Macromolecules, Volume 233, 2023, 123518.
    [5]Huijun Zhu, Hongbo Chen, Xiaowei Zeng, Zhongyuan Wang, Xudong Zhang, Yanping Wu, Yongfeng Gao, Jinxie Zhang, Kewei Liu, Ranyi Liu, Lintao Cai, Lin Mei, Si-Shen Feng, Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance, Biomaterials, Volume 35, Issue 7, 2014, Pages 2391-2400.
    [6]R.H. Müller, C.M. Keck,Twenty years of drug nanocrystals: Where are we, and where do we go?,European Journal of Pharmaceutics and Biopharmaceutics, Volume 80, Issue 1,2012, Pages 1-3.
    [7]Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013 Jul-Sep;3
    [8]Nguyen DN, Clasen C, Van den Mooter G. Pharmaceutical Applications of Electrospraying. J Pharm Sci. 2016 Sep;105
    [9]Pawar A, Thakkar S, Misra M. A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Control Release. 2018 Sep 28;286:179-200. doi: 10.1016/j.jconrel.2018.07.036. Epub 2018 Jul 24.
    [10]Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TAT, Zakaria ZAB. In Vitro Delivery and Controlled Release of Doxorubicin for Targeting Osteosarcoma Bone Cancer. Molecules. 2013; 18(9):10580-10598.
    [11]Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci. 2015 Sep 14;16(9):22094-136.
    [12]Kuen Yong Lee, David J. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science, Volume 37, Issue 1, 2012, Pages 106-126.
    [13]He L, Shang Z, Liu H, Yuan ZX. Alginate-Based Platforms for Cancer-Targeted Drug Delivery. Biomed Res Int. 2020;2020:1487259. Published 2020 Oct 7.
    [14]K. Y. Lee and D. J. Mooney, “Alginate: properties and biomedical applications,” Progress in Polymer Science, vol. 37, no. 1, pp. 106–126, 2012.
    [15]Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003;24(22):4023-4029.
    [16]Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8(3):71-78.
    [17]S.-B. Park, E. Lih, K.-S. Park, Y. K. Joung, and D. K. Han, “Biopolymer-based functional composites for medical applications,” Progress in Polymer Science, vol. 68, pp. 77–105, 2017.
    [18]M. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, and K. Winnicka, “Alginate: current use and future perspectives in pharmaceutical and biomedical applications,” International Journal of Polymer Science, vol. 2016, Article ID 7697031, 17 pages, 2016.
    [19]J. Li, J. He, and Y. Huang, “Role of alginate in antibacterial finishing of textiles,” International Journal of Biological Macromolecules, vol. 94, no. Part A, pp. 466–473, 2017.
    [20]M. Ø. Dalheim, J. Vanacker, M. A. Najmi, F. L. Aachmann, B. L. Strand, and B. E. Christensen, “Efficient functionalization of alginate biomaterials,” Biomaterials, vol. 80, pp. 146–156, 2016.
    [21]J.-S. Yang, Y.-J. Xie, and W. He, “Research progress on chemical modification of alginate: a review,” Carbohydrate Polymers, vol. 84, no. 1, pp. 33–39, 2011.
    [22]C. H. Goh, P. W. S. Heng, and L. W. Chan, “Alginates as a useful natural polymer for microencapsulation and therapeutic applications,” Carbohydrate Polymers, vol. 88, no. 1, pp. 1–12, 2012.
    [23]J. Shin, Evaluation of Calcium Alginate Microparticles Prepared Using a Novel Nebulized Aerosol Mediated Interfacial Crosslinking Method, University of Toledo Health Science Campus, 2016.
    [24]S. Wee and W. R. Gombotz, “Protein release from alginate matrices,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 267–285, 1998.
    [25]L. W. Chan, H. Y. Lee, and P. W. S. Heng, “Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system,” Carbohydrate Polymers, vol. 63, no. 2, pp. 176–187, 2006.
    [26]Cancer-Targeted Drug Delivery. Biomed Res Int. 2020 Oct 7;2020:1487259.
    [27]Wayne R Gombotz, SiowFong Wee, Protein release from alginate matrices, Advanced Drug Delivery Reviews, Volume 31, Issue 3, 1998, Pages 267-285.
    [28]C. K. Kuo and P. X. Ma, “Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties,” Biomaterials, vol. 22, no. 6, pp. 511–521, 2001.
    [29]B. B. Crow and K. D. Nelson, “Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber,” Biopolymers, vol. 81, no. 6, pp. 419–427, 2006.
    [30]A. D. Augst, H. J. Kong, and D. J. Mooney, “Alginate hydrogels as biomaterials,” Macromolecular Bioscience, vol. 6, no. 8, pp. 623–633, 2006.
    [31]Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol. 2020;153:1035-1046.
    [32]Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126.
    [33]Wang S, Wu X, Tan M, Gong J, Tan W, Bian B, et al. Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. J Ethnopharmacol. 2012;140(1):33–45.
    [34]Zhong Z, Yu H, Wang S, Wang Y, Cui L. Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin Med. 2018;13:44.
    [35]Sang W, Zhong Z, Linghu K, Xiong W, Tse AKW, Cheang WS, et al. Siegesbeckia pubescens Makino inhibits Pam3CSK4-induced inflammation in RAW 264.7 macrophages through suppressing TLR1/TLR2-mediated NF-kappaB activation. Chin Med. 2018;13:37.
    [36]Wang F, Yao X, Zhang Y, Tang J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia. 2019;134:329-339.
    [37]Sun Q, Gong T, Liu M, et al. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine. 2022;94:153805.
    [38]Kaur K, Sharma R, Singh A, et al. Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. Chin Herb Med. 2022;14(4):511-527. Published 2022 Sep 20.
    [39]Xie Y, Fan C, Dong Y, et al. Functional and mechanistic investigation of Shikonin in scarring. Chem Biol Interact. 2015;228:18-27.
    [40]Nie Y, Yang Y, Zhang J, et al. Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother. 2017;95:1119-1128.
    [41]Wang Z, Liu T, Gan L, et al. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol. 2010;643(2-3):211-217.
    [42]Wang Y, Zhou Y, Jia G, et al. Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathway. Biochem Pharmacol. 2014;88(3):322-333.
    [43]Kim HJ, Hwang KE, Park DS, et al. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J Transl Med. 2017;15(1):123. Published 2017 May 31.
    [44]Lan W, Wan S, Gu W, Wang H, Zhou S. Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin. Cell Biochem Biophys. 2014;70(2):1459-1467.
    [45]Hsieh YS, Liao CH, Chen WS, Pai JT, Weng MS. Shikonin Inhibited Migration and Invasion of Human Lung Cancer Cells via Suppression of c-Met-Mediated Epithelial-to-Mesenchymal Transition. J Cell Biochem. 2017;118(12):4639-4651.
    [46]Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-m2. Oncogene. 2011;30:4297-4306
    [47]Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E. Pyruvate kinase type m2: A crossroad in the tumor metabolome. The British journal of nutrition. 2002;87(Suppl 1):S23-29
    [48] Xuan Y, Hu X. Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer letters. 2009;274:233-242。
    [49]Yeh CC, Kuo HM, Li TM, Lin JP, Yu FS, Lu HF, Chung JG, Yang JS. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (t24). In vivo. 2007;21:1011-1019
    [50]Yoon Y, Kim YO, Lim NY, Jeon WK, Sung HJ. Shikonin, an ingredient of lithospermum erythrorhizon induced apoptosis in hl60 human premyelocytic leukemia cell line. Planta medica. 1999;65:532-535
    [51]Shilnikova K, Piao MJ, Kang KA, Ryu YS, Park JE, Hyun YJ, Zhen AX, Jeong YJ, Jung U, Kim IG, Hyun JW. Shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in cisplatin-resistant human ovarian cancer cells. Oncology letters. 2018;15:5417-5424
    [52]Thonsri U, Seubwai W, Waraasawapati S, et al. Antitumor Effect of Shikonin, a PKM2 Inhibitor, in Cholangiocarcinoma Cell Lines. Anticancer Res. 2020;40(9):5115-5124.
    [53]Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG. Targeting glucose metabolism: an emerging concept for anticancer therapy. Am J Clin Oncol. 2011;34(6):628-635.
    [54]Hsu, MC., Hung, WC. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer 17, 35 (2018).
    [55]Cui R, Shi XY. Expression of pyruvate kinase M2 in human colorectal cancer and its prognostic value. Int J Clin Exp Pathol. 2015;8(9):11393-11399.
    [56]Mohammad GH, Olde Damink SW, Malago M, Dhar DK, Pereira SP. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome. PLoS One. 2016;11(3):e0151635. Published 2016 Mar 18.
    [57]Kobierzycki C, Piotrowska A, Latkowski K, et al. Correlation of Pyruvate Kinase M2 Expression with Clinicopathological Data in Ovarian Cancer. Anticancer Res. 2018;38(1):295-300.
    [58]Miao, Yi, et al. "Inhibition of proliferation, migration, and invasion by knockdown of pyruvate kinase-M2 (PKM2) in ovarian cancer SKOV3 and OVCAR3 cells." Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 24.6 (2016): 463-475.
    [59]Wang, Yonggang, et al. "PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis." International journal of biological sciences 14.13 (2018): 1883.
    [60]Ahn HM, Son GM, Lee IY, et al. Optimal ICG dosage of preoperative colonoscopic tattooing for fluorescence-guided laparoscopic colorectal surgery. Surg Endosc. 2022;36(2):1152-1163.
    [61]Liu, M.; Wang, S.J.; Yang, X.; Peng, H. Diagnostic Efficacy of Sentinel Lymph Node Biopsy in Early Oral Squamous Cell Carcinoma: A Meta-Analysis of 66 Studies. PLoS ONE 2017, 12, e0170322. 。
    [62]Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine. 2019;14:7823-7838. Published 2019 Sep 25.
    [63]Moody ED, Viskari PJ, Colyer CL. Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci App. 1999;729:55–64.
    [64]Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69:1268–1272.
    [65]Kim JH, Ku M, Yang J, Byeon HK. Recent Developments of ICG-Guided Sentinel Lymph Node Mapping in Oral Cancer. Diagnostics (Basel). 2021;11(5):891. Published 2021 May 17.
    [66]Crocetta, F.M.; Botti, C.; Pernice, C.; Murri, D.; Castellucci, A.; Menichetti, M.; Costantini, M.; Venturelli, F.; Bassi, M.C.; Ghidini, A. Sentinel node biopsy versus elective neck dissection in early-stage oral cancer: A systematic review. Eur. Arch. Otorhinolaryngol. 2020, 277, 3247–3260.
    [67]Thompson, C.F.; John, M.A.S.; Lawson, G.; Grogan, T.; Elashoff, D.; Mendelsohn, A.H. Diagnostic value of sentinel lymph node biopsy in head and neck cancer: A meta-analysis. Eur. Arch. Otorhinolaryngol. 2012, 270, 2115–2122.
    [68]Liu Z, Song D, Li Z, et al. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32(11):1463-1468.
    [69]Altinoğlu EI, Russin TJ, Kaiser JM, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2008;2:2075–2084.
    [70]Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32:7127–7138. doi:10.1016/j.biomaterials.2011.06.024
    [71]Schulze T, Bembenek A, Schlag PM. Sentinel lymph node biopsy progress in surgical treatment of cancer. Langenbecks Arch Surg. 2004;389:532–550.
    [72]Owens EA, Henary M, El Fakhri G, Choi HS. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res. 2016;49:1731–1740.
    [73]Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–2640.
    [74]Jo D, Hyun H. Structure-inherent targeting of near-infrared fluorophores for image-guided surgery. Chonnam Med J. 2017;53:95–102.
    [75]Li E, Sun Y, Lv G, et al. Sinoporphyrin sodium based sonodynamic therapy induces anti-tumor effects in hepatocellular carcinoma and activates p53/caspase 3 axis. Int J Biochem Cell Biol. 2019;113:104-114.
    [76]Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine. 2022;17:3511-3529
    [77]Liu Y, Chen S, Sun J, et al. Folate-Targeted and Oxygen/Indocyanine Green-Loaded Lipid Nanoparticles for Dual-Mode Imaging and Photo-sonodynamic/Photothermal Therapy of Ovarian Cancer in Vitro and in Vivo [published correction appears in Mol Pharm. 2020 Apr 6;17(4):1442-1443]. Mol Pharm. 2019;16(10):4104-4120.
    [78]Porcu, E.P.; Salis, A.; Gavini, E.; Rassu, G.; Maestri, M.; Giunchedi, P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol. Adv. 2016, 34, 768–789.
    [79]Su, Y.; Hu, Y.; Wang, Y.; Xu, X.; Yuan, Y.; Li, Y.; Wang, Z.; Chen, K.; Zhang, F.; Ding, X.; et al. A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy. Biomaterials 2017, 139, 75–90.
    [80]Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci. 2021;78(17-18):6119-6141.
    [81]Erlichman DB, Weiss A, Koenigsberg M, Stein MW. Contrast enhanced ultrasound: A review of radiology applications. Clin Imaging. 2020;60(2):209-215.
    [82]Tinkov S, Coester C, Serba S, et al. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release. 2010;148(3):368-372.
    [83]Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation. 2001;104(17):2107-2112. doi:10.1161/hc4201.097061
    [84]Yeh JS, Sennoga CA, McConnell E, et al. A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS One. 2015;10(7):e0129681. Published 2015 Jul 10.
    [85]Joy DC, Pawley JB. High-resolution scanning electron microscopy. Ultramicroscopy. 1992;47(1-3):80-100.
    [86]Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol. 2013;14(8):743-752.
    [87]Güvener N, Appold L, de Lorenzi F, et al. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods. 2017;130:4-13.
    [88]Roovers S, Segers T, Lajoinie G, et al. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. Langmuir. 2019;35(31):10173-10191.
    [89]Newbury DE, Ritchie NW. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci. 2015;50(2):493-518.
    [90]Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59(1):221-226.
    [91]Fogh J. Human tumor lines for cancer research. Cancer Invest. 1986;4(2):157-184.
    [92]https://www.leltek.com/zh/%e7%94%a2%e5%93%81/lesono-linear-%e6%8e%a2%e9%a0%ad/
    [93]Kim H, Xue X. Detection of Total Reactive Oxygen Species in Adherent Cells by 2',7'-Dichlorodihydrofluorescein Diacetate Staining. J Vis Exp. 2020;(160):10.3791/60682. Published 2020 Jun 23.
    [94]https://www.atcc.org/products/htb-77
    [95]https://m.chemicalbook.com/SupplyInfo_714126.htm
    [96]Liu T, Xiao B, Xiang F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11(1):2788. Published 2020 Jun 3.
    [97]Yu JJ, Lee KB, Mu C, et al. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol. 2000;16(3):555-560.
    [98]Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. 2018;2018(6):10.1101/pdb.prot095505. Published 2018 Jun 1

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE