簡易檢索 / 詳目顯示

研究生: 顏萬祥
Wan-Siang Gan
論文名稱: 二硫硒化鎢層狀半導體之晶體成長與光學特性研究
Study of crystal growth and optical properties of mixed-layerd W(SxSe1-x)2
指導教授: 李奎毅
Kuei-Yi Lee 
口試委員: 邱博文
Po-Wen Chiu
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 化學氣相傳輸法二硫化鎢二硒化鎢壓電調製光譜激子躍遷
外文關鍵詞: Chemical vapor transport, Tungsten disulfide, sTungsten diselenide, piezoreflectance, excitonic-transition
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用化學氣相傳輸法 (Chemical vapor transport, CVT) 以碘為傳導劑成長W(SxSe1-x)2 (0 ≤ x ≤ 1, Δx = 0.2和x = 0.5) 系列層狀半導體樣品, 並對此系列樣品進行材料分析與光學特性研究. 利用穿透式電子顯微鏡和能量散佈分析儀觀察與分析此系列樣品的晶格結構和元素比例. 藉由X-ray繞射實驗可以確定此系列樣品單晶之晶體為2H六角結構, 並計算其晶格常數. 從Raman光譜分析其晶格振動和聲子分析材料組成結構, 其特徵峰分別為E12g 和A1g , 量測範圍在150 - 450 cm-1. 在光學方面以壓電調制光譜技術來量測並利用壓電陶瓷材料給予樣品週期形態性應變, 在25 K至300 K做變溫量測, 以研究此系列樣品在直接能隙附近之激子躍遷特性與激子能隙結構, 並對量測結果以勞倫茲線形擬合獲得此系列樣品在各溫度下激子躍遷A1和B訊號能量, 探討激子躍遷的訊號隨著硫成份變化, 並對溫度與激子訊號和展寬變化的關係加以討論.


W(SxSe1-x)2 (0 < X < 1, Δx = 0.2 and x = 0.5) series of single crystal were gown by chemical vapor transport method (CVT) using iodine as a transport agent. Energy dispersive X-ray spectroscopy was employed to determine the contents of W(SxSe1-x)2 (0 < X < 1, Δx = 0.2 and x = 0.5). By X-ray diffraction measurement, the structure of W(SxSe1-x)2 serias all had the same 2H two-layer hexagonal structure. The evolution of lattice parameter of W(SxSe1-x)2 was reported in this study. Raman scattering for the first-order E12g and A1g modes were observed in the range of 150 - 450 cm-1. The temperature dependence of the spectral features in the vicinity of the direct band edge of mixed crystal W(SxSe1-x)2 were measured in the temperature range of 25 K - 300 K by using piezoreflectance (PzR). Form a detailed line shape fitting of the PzR spectra, the temperature dependences of energies and broadening parameters of the A1 and B excitons are determined accurately. The parameters that describe the temperature variations of the energies and broadening functions of the excitonic transition was evaluated and discussed.

目錄 中文摘要--------------------------------------------------------------- I 英文摘要--------------------------------------------------------------- II 致謝------------------------------------------------------------------- III 目錄------------------------------------------------------------------- V 圖索引----------------------------------------------------------------- VI 表索引----------------------------------------------------------------- VIII 第一章 緒論------------------------------------------------------------- 1 1.1 二維材料---------------------------------------------------------- 1 1.2 過渡金屬硫屬化合物------------------------------------------------- 2 1.3 二硫化鎢與二硒化鎢------------------------------------------------- 4 1.4 過渡金屬硫化物合成與製程-------------------------------------------- 6 1.4.1 化學氣相傳輸法-------------------------------------------------- 6 1.5 調制光譜---------------------------------------------------------- 8 1.6 激子效應---------------------------------------------------------- 10 1.7 研究背影及動機----------------------------------------------------- 11 第二章 實驗流程與儀器介紹------------------------------------------------- 12 2.1 實驗流程圖-------------------------------------------------------- 12 2.2 二硫硒化鎢晶體成長------------------------------------------------- 13 2.2.1 晶體成長------------------------------------------------------- 14 2.2.1.1 真空系統--------------------------------------------------- 14 2.2.1.2 晶體成長反應系統-------------------------------------------- 15 2.2.2 W(SxSe1-x)2晶體成長-------------------------------------------- 16 2.3量測儀器----------------------------------------------------------- 20 2.3.1穿透式電子顯微鏡------------------------------------------------- 20 2.3.2 X光能量散佈光譜儀----------------------------------------------- 21 2.3.3 X光繞射-------------------------------------------------------- 22 2.3.4 拉曼光譜儀----------------------------------------------------- 24 2.3.5 調制光譜------------------------------------------------------- 25 2.3.5.1 樣本製備---------------------------------------------------- 25 2.3.5.2 壓電調制光譜------------------------------------------------ 26 第三章 實驗結果討論------------------------------------------------------ 29 3.1穿透式電子顯微鏡影像分析--------------------------------------------- 29 3.2 X光能量散佈光譜圖分析----------------------------------------------- 31 3.3 X-ray diffractometer分析 ----------------------------------------- 33 3.4 Raman散射結果與討論------------------------------------------------ 39 3.5 PzR量測----------------------------------------------------------- 43 第四章 結論-------------------------------------------------------------- 53 參考文獻---------------------------------------------------------------- 54

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D, Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[2] K. S. Novoselov, “Nobel lecture: Graphene: Materials in the flatland,” Rev. Mod. Phys., vol. 83, pp. 837-849, 2011.
[3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, pp. 351-355, 2008.
[4] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor devices based on graphene materials,” J. Phys. Chem. C, vol. 113, pp. 13103-13107, 2009.
[5] D. W. Zhang, X. D. Li, H. B, Li, S. Chen, Z. Sun, X. J. Yin, and S. M. Huang, "Graphene-based counter electrode for dye-sensitized solar cells," Carbon, vol. 49, pp. 5382-5388, 2011.
[6] S. Basu and P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensor," Sens. Actuator B, vol. 173, pp. 1-21, 2012.
[7] Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology,” ACS Nano, vol. 8 pp. 4133-4156, 2014.
[8] H. T. Liu, Y. Q. Liu, and D. b. Zhua, “Chemical doping of graphene,” J. Mater. Chem., vol. 21, pp. 3335–3345, 2011.
[9] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, pp. 193, 1969.
[10] A. R. Beal and J. C. Knights, “Transmission spectra of some transition metal dichalcogenides II Group VIA: trigonal prismatic coordination,” J. Phys. C: Solid State Phys., vol. 5, pp. 3540, 1972.
[11] W. Y. Liang, “Optical anisotropy in layer compounds,”J. Phys. C: Solid State Phys. vol. 6, pp. 551, 1973.
[12] W. J. Schutte, J. L. De Boer, and F. Jellinek, “Crystal structures of tungsten disulfide and diselenide,” J. Solid State Chem., vol. 70, pp. 207-209, 1987.
[13] S. Y. Hu, M. C. Cheng, K. K. Tiong, and Y. S. Huang, “The electrical and optical anisotropy of rhenium-doped WSe2 single crystals,” J. Phys.: Condens. Matter, vol. 17, pp. 3575, 2005.
[14] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 10451-10453, 2005.
[15] Q. H. Wang, K. Kolantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
[16] B. Liu, M. Kopf, A. A. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater., vol. 27, pp. 4423–4429, 2015.
[17] B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, and C. Zhou, “High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors,” ACS Nano, vol. 8, pp. 5304–5314, 2014.
[18] L. Chen, B. Liu, A. N. Abbas, Y. Ma, X. Fang, Y. Liu, and C. Zhou, “Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur-assisted chemical vapor deposition,” ACS Nano, vol. 8, pp. 11543–11551, 2014.
[19] L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” ACS Nano, vol. 9, pp. 8368–8375, 2015.
[20] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Progress Surf. Sci., vol. 29, pp.1-167, 1988.
[21] Z. L. Liu, L. C. Cai, and X. L. Zhang, “Novel high pressure structures and superconductivity of niobium disulfide,” J. Alloys Compd., vol. 610, pp. 472-477, 2014.
[22] Z. Wang, Q, Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, “Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries,” Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
[23] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, pp. 136805-1-136805-4, 2010.
[24] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010.
[25] E. S. Kadantsev and P. Hawrylak, “Electronic structure of a single MoS2 monolayer,” Solid State Commun., vol. 152, pp. 909-913, 2012.
[26] A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrezm, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urias, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano, vol. 7, pp. 5235–5242, 2013.
[27] J. W. Chang, L. F. Register, and S. Banerjee, “Ballistic performance comparison of monolayer transition metal dichalogenide MX2 (M = Mo, W; x = Se, S, Te) metal-oxide, semiconductor field effect transistors,” J. Appl. Phys., vol. 8, pp. 115, 2014.
[28] W. Liu, J. H. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field,” Nano Lett., vol. 13, pp. 1983-1990, 2013.
[29] H. Shi, H. Pan, Y.-W. Zhang, and B. I. Yakobson, “Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2,” Phys. Rev. B, vol. 87, pp. 155304, 2013.
[30] E. Fortin and F. Raga, “Excitons in molybdenum disulphide,” Phys. Rev. B, vol. 11, pp. 905, 1975.
[31] W. Kautek, H. Gerisch, and H. Tributsch, “The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d‐band semiconductors,” Electrochem. Soc., vol. 27, pp. 2471-2478, 1980.
[32] K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides,” J. Phys. Chem., vol. 86, pp. 463-467, 1982.
[33] C. T. Tye and K. J. Smith, “Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst,” Catal. Today, vol. 116, pp. 461-468, 2006.
[34] S. D. Walck, J. S. Zabinski, N. T. McDevitt, and J. E. Bultman, “Characterization of air-annealed, pulsed laser deposited ZnO-WS2 solid film lubricants by transmission electron microscopy,” Thin Solid Films, vol. 305, pp. 130-143, 1997.
[35] C. Feng, L. Huang, Z. Guo, and H. Liu, “Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application,” Electrochem. Commun., vol. 9, pp. 119-122, 2007.
[36] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Found. Mater., vol. 23, pp. 5511-5517, 2013.
[37] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coating,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
[38] M. Genut, L. Margulis, G. Hodes, and R. Tenne, “Preparation and microstructure WS2 thin films,” Thin Solid Films, vol. 217, pp. 91.97, 1992.
[39] A. Jäger-Waldau, M. Ch. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci. vol.70-71, pp. 731.736, 1993.
[40] C. J. Carmalt, I. P. Parkin, and E. S. Peters, “Atmospheric pressure chemical vapour deposition of WS2 thin film on glass,” Polyhedron, vol. 22, pp. 1499-1505, 2003.
[41] S. Hussain, M. A. Shehzad, D. Vikraman, M. Z. lqbal, J. Singh, M. F. Khan, J. H. Eom, Y. H. Seo, J. W. Jung, “Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition,” J. Alloys Compd., vol. 653, pp. 369-378, 2015.
[42] R. Vaidya, M. Daves, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, pp. 611-616, 2004.
[43] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, “Chemical vapor transport reactions – A historical review,” Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
[44] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides,” Cryst. Growth Des., vol. 13, pp.4453-4459, 2013.
[45] Y. K. Su, C. H. Wu, Y. S. Huang, H. P. Hsu, W. C. Chen, S. H. Hsu, and S. J. Chang, “Piezoreflectance and contactless electroreflectance spectra of an optoelectronic material: GaInNP grown on GaAs substrates,” J. Cryst. Growth, vol. 264, pp. 357-362, 2004.
[46] L. F. Lastras-Martinez, R. E. Balderas-Navarro, M. Chavira-Rodriguez, J. M. Flores-Camacho, A. Lastras-Martinez, “Strain induced optical anisotropies in zincblende semiconductors,” Phys. Status Solidi B, vol. 240, pp. 500-508, 2003.
[47] A. Jaeger, W. D. Sun, F. H. Pollak, C. L. Reynolds, M. Geva, D. V. Stampone, M. W. Focht, O. Y. Raisky, W. B. Wang, and R. R. Alfano, “Characterization of InGaAsP/InP pin solar cell structures using modulation spectroscopy and secondary ion mass spectrometry,” J. Appl. Phys., vol. 85, pp. 1921, 1999.
[48] F. Kubacki, J. Gutowski, D. Hommel, M. Heuken, U.W. Pol, “Determination of deformation potentials in ZnSe/GaAs strained-layer heterostructures,” Phys. Rev. B, vol. 54, pp. 2028, 1996.
[49] R. J. Thomas, M. S. Boley, H. R. Chandrasekhar, M. Chandrasekhar, C. Parks, A. K. Ramdas, J. Han, M. Kobayashi, and R. L. Gunshor, “Raman and modulated-reflectivity spectra of a strained pseudomorphic ZnTe epilayer on InAs under pressure,” Phys. Rev. B, vol. 49, pp. 2181-2184, 1994.
[50] K. Terashima and I. Imai, “Piezooptical Studies of Group 4B Transition Metal Disulfides ZrS2 and HfS2,” J. Phys. Soc. Jpn., vol. 60, pp. 1814-1823, 1991.
[51] W. S. Chi, D. Y. Lin, Y. S. Huang, H. Qiang, F. H. Pollak, D. L. Mathine, and G. N. Maracas, “Temperature dependence of quantized states in an InGaAs/GaAs strained asymmetric triangular quantum well,” Semicond. Sci. Technol., vol. 11, pp. 345, 1996.
[52] S. Moneger, H. Qiang, and F.H. Pollak, “Contactless electroreflectance study of a GaAIAs/lnGaAs/GaAs/GaAIAs step quantum well structure,” J. Electronic Mater., vol. 24, pp. 1341-1344, 1995.
[53] R. G. Alonso, C. Parks, A. K. Ramdas, H. Luo, N. Samarth, J. K. Furdyna, L. R. Ram-Mohan, “Modulated reflectivity spectrum of strained ZnSe/Zn1−xCdx Se/ZnSe single quantum wells,” Phys. Rev. B, vol. 45, pp. 1181-1186, 1992.
[54] R. C. Tu, Y. K. Su, Y. S. Huang, and F. R. Chien, “Structural and optical properties of high-quality ZnTe grown on GaAs using ZnSe/ZnTe strained-layer superlattices buffer layer,” J. Cryst. Growth, vol. 201–202, pp. 506-509, 1999.
[55] P. Castrillo, M. I. Alonso, G. Armelles, M. Ilg, and K. Ploog, “Piezoelectric-field-induced localization of barrier states in {211}-oriented InAs/GaAs superlattices,” Phys. Rev. B, vol. 47, pp. 12945-12948, 1993.
[56] J. Calatayud, J. Allegre, H. Mathieu, N. Magnea, and H. Mariette, “Piezoreflectance in CdTe/(Cd, Zn) Te strained-layer superlattices: Periodicity effect, valence-band offset, and exciton binding energie,” Phys. Rev. B, vol. 47, pp. 9684-9692, 1993.
[57] M. Cadona, Modulation Spectroscopy, Academic Press, New York, 1969.
[58] D. E. Aspnes, Handbook on Semiconductors, North-Holland, Amsterdam, vol. 2, p. 109, 1980.
[59] G. H. Wannier, “The structure of electronic excitation levels in insulating crystals,” Phys. Rev., vol. 52, pp. 191-197, 1937.
[60] D. Yang and R. F. Frindt, “Power x-ray diffraction of two-dimensional,” J. Appl. Phys. vol. 79, pp. 2376-2385, 1996.
[61] B. F. Mentzen and M. J. SieNKO, “Preparation and X-Ray study of mixed-anion tungsten dichalcogenides,” Inorganic Chemistry, vol. 15, pp. 2198-2202, 1976.
[62] J. L. Verble and T. J. Wieting, “Lattice mode degeneracy in MoS2 and other layer compounds,” Phys. Rev. Lett., vol. 25, pp. 362-365, 1970.
[63] T. J. Wieting and J. L. Verble, “Infrared and Raman studies of long-wavalength optical phonos in Hexagonal MoS2,” Phys. Rev. B, vol. 3, pp. 4286-4292, 1971.
[64] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, “Raman scattering and infrared reflectance in 2H-MoSe2,” J. Phys. Soc. Jpn., vol. 49, pp. 1069-1077, 1980.
[65] W. J. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. L. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, pp. 9677-9683, 2013.
[66] A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides II Group VIA: trigonal prismatic coordination,” J. Phys. C: Solid state Phys., vol. 5, pp. 3540, 1972.
[67] A. R. Beal and W. Y. Liang, “Excitons in 2H-WSe2 and 3R-WS2,” J. Phys. C: Solid State Phys., vol. 9, pp. 2459, 1976.
[68] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149-154, 1967.
[69] P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, vol. 35, pp. 9174-9189, 1987.
[70] P. C. Yen, H. P. Hsu, Y. T. Liu, Y. S. Huang, and K. K. Tiong, “Temperature dependences of energies and broadening parameters of the band-edge excitons of Re-doped WS2 and 2H-WS2 single crystals,” J. Phys.: Condens. Matter, vol. 16, pp. 6995, 2004.
[71] T. Y. Ke, H. P. Hsu, Y. P. Wang, and Y. S. Huang, “Temperature dependent piezoreflectance study of Mo1−xWxSe2 layered crystals,” J. Appl. Phys., vol. 118, pp. 215740, 2015.
[72] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, “Temperature dependence of energies and broadening parameters of the band-edge excitions of Mo1-xWxS2 single crystal,” J. Phys.: Condens. Matter, vol. 10, pp. 9317, 1998.
[73] C. H. Ho, P. C. Liao, Y. S. Huang, and K. K. Tiong, “Temperature dependence of energies and broadening parameters of the band-edge excitons of ReS2 and ReSe2,” Phys. Rev. B, vol. 55, pp. 15608, 1997.
[74] P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, vol. 35, pp. 9174-9189, 1989.
[75] L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se,” Phys. Rev. B, vol. 54 pp. 1819-1824, 1996.

無法下載圖示 全文公開日期 2021/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE