簡易檢索 / 詳目顯示

研究生: 洪玟歆
Wen-Hsin Hung
論文名稱: 基於多孔Ti3C2Tx MXene的超高整流中尺度離子二極體裝置用於高效滲透能源發電
Porous Ti3C2Tx MXene-Based Mesoscale Ionic Diodes with Ultrahigh Rectification for High-Performance Osmotic Power Generation
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 康敦彥
Dun-Yen Kang
段興宇
Hsing Yu Tuan
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 101
中文關鍵詞: 奈米流體二維MXene奈米片離子傳輸離子電流整流滲透能源轉換
外文關鍵詞: Nanofluidics, 2D MXene nanosheet, Ion transport, Ion current rectification, Osmotic energy conversion
相關次數: 點閱:276下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,滲透能源因其清潔和可持續的特性而引起了大量的關注。滲透能可以透過反向電滲析技術收集,並使用離子選擇性膜將儲存在離子濃度梯度中的化學勢能轉化為電能。然而,在過去文獻所報告的微小納米通道中存在著高電阻和低離子通量的問題,因此滲透發電的性能受到了限制。在此,我們開發了一種基於中尺度離子二極體的混合系統p-MXene@MC,其由二維多孔Ti3C2Tx MXene (p-MXene)和一維錐形單孔PET次微米尺度通道(MC)構成。此混合通道中高度幾何不對稱的特點賦予了p-MXene@MC優異的離子選擇性和出色的離子電流整流特性(或稱為離子二極體特性),使薄膜在一個方向上放大離子傳輸。除了實驗結果外,我們還使用了基於泊松-能斯特-普朗克(PNP)和納維-斯托克斯(NS)模型的數值模擬來揭示離子二極體效應源於在大尺寸單通道MC基材上引入p-MXene次納米通道。受益於強離子二極體效應以及多孔MXene垂直通道中較快的離子傳輸,p-MXene@MC在1000倍KCl濃度梯度以及中性環境下產生了345 pW的創紀錄滲透功率,優於所有先前報導的單孔滲透能源產生器。此外,p-MXene@MC系統可以承受苛刻的化學條件,因此從酸性溶液中的質子濃度梯度中收集滲透能是可行的,其在1000倍質子梯度下輸出功率可達1000 pW以上。我們還將p-MXene@MC的離子電流整流特性和滲透發電性能與由MXene通道層和 MC 組成的系統(MXene@MC)進行了比較。結果表明,前者能夠產生更高的放大離子電流和滲透性能。我們期望本研究可以為高性能滲透能源產生器開闢一條嶄新的途徑。


    Recently, osmotic power has garnered considerable attention owing to its environmentally friendly and sustainable attributes. One effective method for harnessing osmotic power is through the process of reverse electrodialysis. This approach involves the conversion of the chemical potential energy stored in an ionic concentration gradient into electrical energy, facilitated by the use of ion-selective membranes. Nevertheless, the potential of osmotic power generation is somewhat constrained by the restricted ion flux within the small-scale nanochannels. Herein, we report a hybrid mesoscale ionic diode system (p-MXene@MC), constructed from two-dimensional porous Ti3C2Tx MXene (p-MXene) and a single conical PET mesochannel (MC). The high asymmetry in channel geometry of p-MXene@MC grants the membrane with remarkable ion selectivity and an exceptional ion current rectification (ICR) property (or called ionic diode property) which allow the membrane transporting ions in one direction with amplified property. In addition to experimental results, we employ the numerical simulation based on the Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) model to unravel that the ionic diode effect stems from the introduction of p-MXene subnanochannels onto the large-sized single MC substrate. Benefiting from strong ionic diode effect and enhanced ion transport from vertical porous MXene channels, the p-MXene@MC produces a record high osmotic power of 345 pW under a 1000-fold KCl gradient at neutral pH. This remarkable achievement surpasses the capabilities of all existing single-pore devices. Furthermore, the p-MXene@MC system can withstand harsh chemical conditions, which makes it suitable for harvesting energy from proton concentration gradients. The output power can reach over 1000 pW at a 1000-fold proton gradient. We also compare the ICR property and osmotic power generation performance of the proposed p-MXene@MC with the system, composed of rigid MXene channels layer and MC (MXene@MC). The results clearly demonstrate that the former exhibits superior performance in amplifying ionic current and osmotic power. We anticipate that the findings of this study will serve as a pioneering platform for achieving high-performance osmotic power generation.

    Abstract i 摘要 iii Table of Content iv List of Tables vi List of Figures viii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Electrical double layer (EDL) 2 1.3 Ion selectivity 4 1.4 Ionic current rectification (ICR) 5 1.5 Osmotic energy conversion 8 1.6 Ti3C2Tx MXene 11 1.7 Single-channel polyethylene terephthalate (PET) membrane 13 Chapter 2 Literature Review 15 Chapter 3 Objective 20 Chapter 4 Materials and Methods 23 4.1 Chemicals and materials 23 4.2 Fabrication process 24 4.2.1 Preparation of porous MXene (p-MXene) 24 4.2.2 Fabrication of single-conical PET mesochannel (MC) 25 4.2.3 Fabrication of porous MXene-covered mesochannel (p-MXene@MC) 27 4.3 Characterization techniques 28 4.4 Electrical measurement 30 4.4.1 Ion transport measurement 30 4.4.2 Osmotic energy measurement 31 Chapter 5 Numerical Simulation 33 5.1 Structural parameters of simulated systems 33 5.2 Governing equations for numerical simulation 35 5.3 Boundary conditions for numerical simulation 36 Chapter 6 Results and Discussion 38 6.1 Material characterization 38 6.1.1 Scanning electron microscope (SEM) 38 6.1.2 Transmission electron microscopy (TEM) 40 6.1.3 Atomic force microscope (AFM) 41 6.1.4 X-ray diffraction (XRD) 41 6.1.5 X-ray photoelectron spectroscopy (XPS) 43 6.1.6 Fourier transform infrared spectroscopy (FTIR) 44 6.1.7 Raman spectroscopy 45 6.1.8 Contact angle 46 6.1.9 Zeta potential analyzer 47 6.2 Ion transport properties 48 6.3 Osmotic energy generation performance 56 6.3.1 Preferential direction 57 6.3.2 Electrode calibration with redox potential (Vred) 58 6.3.3 Comparison between MXene@MC and p-MXene@MC 60 6.3.4 Effect of KCl concentration gradient 62 6.3.5 Effect of electrolyte solution 65 6.3.6 Effect of pH value 66 6.3.7 Effect of channel size 68 6.3.8 Effect of spin-coating cycle 69 6.3.9 Osmotic energy from proton gradient 73 6.4 Stability test of p-MXene@MC as an osmotic power generator 76 Chapter 7 Conclusion 77 References 78

    [1] Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M., Membrane-Based Production of Salinity-Gradient Power. Energy Environ. Sci. 2011, 4, 4423-4434.
    [2] Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W., Highly Selective and High-Performance Osmotic Power Generators in Subnanochannel Membranes Enabled by Metal-Organic Frameworks. Sci. Adv. 2021, 7, eabe9924.
    [3] Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S., Biosensing with Nanofluidic Diodes. J. Am. Chem. Soc. 2009, 131, 8211-8220.
    [4] Zhang, Z.; Huang, X.; Qian, Y.; Chen, W.; Wen, L.; Jiang, L., Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single‐Pore to Multichannel Membranes. Adv. Mater. 2020, 32, 1904351.
    [5] Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S., DNA-Modified Polymer Pores Allow pH-and Voltage-Gated Control of Channel Flux. J. Am. Chem. Soc. 2014, 136, 9902-9905.
    [6] Huang, K. T.; Hung, W. H.; Su, Y. C.; Tang, F. C.; Linh, L. D.; Huang, C. J.; Yeh, L. H., Zwitterionic Gradient Double‐Network Hydrogel Membranes with Superior Biofouling Resistance for Sustainable Osmotic Energy Harvesting. Adv. Funct. Mater. 2023, 33, 2211316.
    [7] Daiguji, H., Ion Transport in Nanofluidic Channels. Chem. Soc. Rev. 2010, 39, 901-911.
    [8] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    [9] Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985.
    [10] Lu, J.; Hu, X.; Ung, K. M.; Zhu, Y.; Zhang, X.; Wang, H., Metal–Organic Frameworks as a Subnanometer Platform for Ion–Ion Selectivity. Acc. Mater. Res. 2022, 3, 735-747.
    [11] Guo, W.; Tian, Y.; Jiang, L., Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834-2846.
    [12] Su, Y.-S.; Hung, W.-H.; Fauziah, A. R.; Siwy, Z. S.; Yeh, L.-H., A pH Gradient Induced Rectification Inversion in Asymmetric Nanochannels Leads to Remarkably Improved Osmotic Power. Chem. Eng. J. 2023, 456, 141064.
    [13] Song, J.; Xu, C. H.; Huang, S. Z.; Lei, W.; Ruan, Y. F.; Lu, H. J.; Zhao, W.; Xu, J. J.; Chen, H. Y., Ultrasmall Nanopipette: Toward Continuous Monitoring of Redox Metabolism at Subcellular Level. Angew. Chem. Int. Ed. 2018, 57, 13226-13230.
    [14] Vlassiouk, I.; Siwy, Z. S., Nanofluidic Diode. Nano Lett. 2007, 7, 552-556.
    [15] Cao, L.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S.; Wang, Y.; Jiang, L.; Zhu, D., Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition. Energy Environ. Sci. 2011, 4, 2259-2266.
    [16] Kim, D.-K.; Duan, C.; Chen, Y.-F.; Majumdar, A., Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels. Microfluid. Nanofluid. 2010, 9, 1215-1224.
    [17] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
    [18] Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O., Nanofluidic Osmotic Power Generators–Advanced Nanoporous Membranes and Nanochannels for Blue Energy Harvesting. Chem. Sci. 2021, 12, 12874-12910.
    [19] Fu, L.; Xia, W., Max Phases as Nanolaminate Materials: Chemical Composition, Microstructure, Synthesis, Properties, and Applications. Adv. Eng. Mater. 2021, 23, 2001191.
    [20] Zou, G.; Zhang, Z.; Guo, J.; Liu, B.; Zhang, Q.; Fernandez, C.; Peng, Q., Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Appl. Mater. Interfaces 2016, 8, 22280-22286.
    [21] Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X., Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium (Vi) from Water. ACS Appl. Mater. Interfaces 2015, 7, 1795-1803.
    [22] Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L.-X.; Wang, S.; Caro, J.; Gogotsi, Y., MXene Molecular Sieving Membranes for Highly Efficient Gas Separation. Nat. Commun. 2018, 9, 155.
    [23] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
    [24] Chen, S.; Zhu, C.; Xian, W.; Liu, X.; Liu, X.; Zhang, Q.; Ma, S.; Sun, Q., Imparting Ion Selectivity to Covalent Organic Framework Membranes Using De Novo Assembly for Blue Energy Harvesting. J. Am. Chem. Soc. 2021, 143, 9415-9422.
    [25] Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-Like Single-Ion Track Membrane Prepared by Electro-Stopping. Nucl. Instrum. Methods Phys. Res. B 2001, 184, 337-346.
    [26] Ma, T.; Janot, J. M.; Balme, S., Track‐Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods 2020, 4, 2000366.
    [27] Guo, W.; Cao, L.; Xia, J.; Nie, F. Q.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L., Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339-1344.
    [28] Siria, A.; Poncharal, P.; Biance, A.-L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458.
    [29] Feng, J.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer MoS2 Nanopores as Nanopower Generators. Nature 2016, 536, 197-200.
    [30] Graf, M.; Lihter, M.; Unuchek, D.; Sarathy, A.; Leburton, J.-P.; Kis, A.; Radenovic, A., Light-Enhanced Blue Energy Generation Using MoS2 Nanopores. Joule 2019, 3, 1549-1564.
    [31] Lin, C.-Y.; Combs, C.; Su, Y.-S.; Yeh, L.-H.; Siwy, Z. S., Rectification of Concentration Polarization in Mesopores Leads to High Conductance Ionic Diodes and High Performance Osmotic Power. J. Am. Chem. Soc. 2019, 141, 3691-3698.
    [32] Laucirica, G.; Albesa, A. G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W. A.; Azzaroni, O., Shape Matters: Enhanced Osmotic Energy Harvesting in Bullet-Shaped Nanochannels. Nano Energy 2020, 71, 104612.
    [33] Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O., Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions Via One-Step Functionalization. ACS Appl. Mater. Interfaces 2020, 12, 28148-28157.
    [34] Dong, Y.; Zhao, Z.; Zhao, J.; Guo, Z.; Du, G.; Sun, Y.; He, D.; Duan, J.; Liu, J.; Yao, H., High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. ACS Appl. Mater. Interfaces 2022, 14, 29197-29212.
    [35] Ma, T.; Balanzat, E.; Janot, J.-M.; Balme, S., Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting. ACS Appl. Mater. Interfaces 2019, 11, 12578-12585.
    [36] Ding, L.; Wei, Y.; Wang, Y.; Chen, H.; Caro, J.; Wang, H., A Two‐Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew. Chem. Int. Ed. 2017, 56, 1825-1829.
    [37] Lao, J.; Lv, R.; Gao, J.; Wang, A.; Wu, J.; Luo, J., Aqueous Stable Ti3c2 MXene Membrane with Fast and Photoswitchable Nanofluidic Transport. ACS nano 2018, 12, 12464-12471.
    [38] Liu, T.; Liu, X.; Graham, N.; Yu, W.; Sun, K., Two-Dimensional MXene Incorporated Graphene Oxide Composite Membrane with Enhanced Water Purification Performance. J. Membr. Sci. 2020, 593, 117431.
    [39] Qin, H.; Wu, H.; Zeng, S.-M.; Yi, F.; Qin, S.-Y.; Sun, Y.; Ding, L.; Wang, H., Harvesting Osmotic Energy from Proton Gradients Enabled by Two-Dimensional Ti3C2Tx MXene Membranes. Adv. Membr. 2022, 2, 100046.
    [40] Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
    [41] Qiao, C.; Wu, H.; Xu, X.; Guan, Z.; Ou‐Yang, W., Electrical Conductivity Enhancement and Electronic Applications of 2D Ti3C2Tx MXene Materials. Adv. Mater. Interfaces 2021, 8, 2100903.
    [42] Siwy, Z. S., Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
    [43] Hou, X.; Guo, W.; Xia, F.; Nie, F.-Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y., A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. J. Am. Chem. Soc. 2009, 131, 7800-7805.
    [44] Alizadeh, A.; Zhang, L.; Wang, M., Mixing Enhancement of Low-Reynolds Electro-Osmotic Flows in Microchannels with Temperature-Patterned Walls. J. Colloid Interface Sci. 2014, 431, 50-63.
    [45] Qiu, Y., Optimal Voltage for Nanoparticle Detection with Thin Nanopores. Analyst 2018, 143, 4638-4645.
    [46] Lin, C.-Y.; Yeh, L.-H.; Siwy, Z. S., Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls. J. Phys. Chem. Lett. 2018, 9, 393-398.
    [47] Sun, Y.; Xu, D.; Li, S.; Cui, L.; Zhuang, Y.; Xing, W.; Jing, W., Assembly of Multidimensional MXene-Carbon Nanotube Ultrathin Membranes with an Enhanced Anti-Swelling Property for Water Purification. J. Membr. Sci. 2021, 623, 119075.
    [48] Wang, F.; Wang, Z.; Wang, S.; Meng, X.; Jin, Y.; Yang, N.; Sunarso, J.; Liu, S., Mechanically Intensified and Stabilized MXene Membranes Via the Combination of Graphene Oxide for Highly Efficient Osmotic Power Production. J. Membr. Sci. 2022, 647, 120280.
    [49] Li, G.; Tan, L.; Zhang, Y.; Wu, B.; Li, L., Highly Efficiently Delaminated Single-Layered MXene Nanosheets with Large Lateral Size. Langmuir 2017, 33, 9000-9006.
    [50] Li, Z. K.; Wei, Y.; Gao, X.; Ding, L.; Lu, Z.; Deng, J.; Yang, X.; Caro, J.; Wang, H., Antibiotics Separation with MXene Membranes Based on Regularly Stacked High‐Aspect‐Ratio Nanosheets. Angew. Chem. Int. Ed. 2020, 59, 9751-9756.
    [51] Yang, W.; Huang, B.; Li, L.; Zhang, K.; Li, Y.; Huang, J.; Tang, X.; Hu, T.; Yuan, K.; Chen, Y., Covalently Sandwiching MXene by Conjugated Microporous Polymers with Excellent Stability for Supercapacitors. Small Methods 2020, 4, 2000434.
    [52] Iqbal, A.; Hong, J.; Ko, T. Y.; Koo, C. M., Improving Oxidation Stability of 2D MXenes: Synthesis, Storage Media, and Conditions. Nano Convergence 2021, 8, 1-22.
    [53] Chen, J.; Yuan, X.; Lyu, F.; Zhong, Q.; Hu, H.; Pan, Q.; Zhang, Q., Integrating MXene Nanosheets with Cobalt-Tipped Carbon Nanotubes for an Efficient Oxygen Reduction Reaction. J. Mater. Chem. A 2019, 7, 1281-1286.
    [54] Peltzer, M. A.; Simoneau, C., Report of an Interlaboratory Comparison from the European Reference Laboratory for Food Contact Materials. Publications Office of the European Union: Luxembourg 2013.
    [55] Pereira, A. P. d. S.; Silva, M. H. P. d.; Lima, É. P.; Paula, A. d. S.; Tommasini, F. J., Processing and Characterization of PET Composites Reinforced with Geopolymer Concrete Waste. Mater. Res. 2017, 20, 411-420.
    [56] Sarycheva, A.; Gogotsi, Y., Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480-3488.
    [57] Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W., Effect of Edge Charges on Stability and Aggregation of Ti3C2Tz MXene Colloidal Suspensions. J. Phys. Chem. C 2018, 122, 27745-27753.
    [58] Rao, S.; Si, K. J.; Yap, L. W.; Xiang, Y.; Cheng, W., Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors. ACS nano 2015, 9, 11218-11224.
    [59] Wang, C.; Zhao, X.-P.; Liu, F.-F.; Chen, Y.; Xia, X.-H.; Li, J., Dendrimer-Au Nanoparticle Network Covered Alumina Membrane for Ion Rectification and Enhanced Bioanalysis. Nano Lett. 2020, 20, 1846-1854.
    [60] Yazda, K.; Bleau, K.; Zhang, Y.; Capaldi, X.; St-Denis, T.; Grutter, P.; Reisner, W. W., High Osmotic Power Generation Via Nanopore Arrays in Hybrid Hexagonal Boron Nitride/Silicon Nitride Membranes. Nano Lett. 2021, 21, 4152-4159.
    [61] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    [62] Chen, C.; Yang, G.; Liu, D.; Wang, X.; Kotov, N. A.; Lei, W., Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. Adv. Funct. Mater. 2022, 32, 2102080.
    [63] Fu, Y.; Guo, X.; Wang, Y.; Wang, X.; Xue, J., An Atomically-Thin Graphene Reverse Electrodialysis System for Efficient Energy Harvesting from Salinity Gradient. Nano Energy 2019, 57, 783-790.
    [64] Tsai, P.-C.; Su, Y.-S.; Gao, M.; Yeh, L.-H., Realization of Robust Mesoscale Ionic Diodes for Ultrahigh Osmotic Energy Generation at Mild Neutral pH. J. Mater. Chem. A 2021, 9, 20502-20509.
    [65] Gao, M.; Tsai, P. C.; Su, Y. S.; Peng, P. H.; Yeh, L. H., Single Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators. Small 2020, 16, 2006013.
    [66] Balme, S.; Ma, T.; Balanzat, E.; Janot, J.-M., Large Osmotic Energy Harvesting from Functionalized Conical Nanopore Suitable for Membrane Applications. J. Membr. Sci. 2017, 544, 18-24.
    [67] Lu, J.; Xu, H.; Yu, H.; Hu, X.; Xia, J.; Zhu, Y.; Wang, F.; Wu, H.-A.; Jiang, L.; Wang, H., Ultrafast Rectifying Counter-Directional Transport of Proton and Metal Ions in Metal-Organic Framework–Based Nanochannels. Sci. Adv. 2022, 8, eabl5070.

    QR CODE