簡易檢索 / 詳目顯示

研究生: 林威伶
Wei-Ling Lin
論文名稱: 水溶性核-殼共軛高分子/富勒烯複合材料的製備與特性探討
Preparation and characteristics of a water-soluble core-shell conjugated polymer/fullerene composite
指導教授: 李篤中
Duu-Jong Lee
口試委員: 鄭智嘉
Chih-Chia Cheng
Christopher Whiteley
Christopher Whiteley
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 富勒烯水溶性共軛高分子
外文關鍵詞: Water-soluble conjugated polymer, Poly(3-thiophene acetic acid)
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 共軛高分子因為具有獨特的光學與電的特性而被廣為探討,由於這兩個材料間有很好的電子受體予體能量轉換效應,共軛高分子與富勒烯的複合材料被廣泛地應用在光電元件上。然而,這些複合材料只能溶於有機溶劑,這樣製程需要額外的經費去處理這些有機溶劑。在本研究中,我們製備了一個對環境友善的水溶性共軛高分子/富勒烯複合材料。首先,我們將疏水的聚噻吩乙酸轉變成雙親性高分子,使其藉著擁有親水端而能溶於水中。然後,利用這個雙親性的共軛高分子將疏水的碳球帶入水中,這個複合材料不僅可以溶於水,且保有了原本的能量轉換效應。我們利用DLS、SEM、TEM證實這個複合材料是約一百奈米的殼¬-核奈米粒子,也利用PL及XPS證實存在於此複合材料中的能量轉換效應。在確定這個水溶性複合材料能夠穩定地形成之後,在文中討論像是熱穩定度與導電性一些特性,值得注意的是,這個複合材料的導電度可以達到1.85 x 10-1 S/cm,比原本疏水的共軛高分子的導電度高出了十的四次方。文中呈現水溶性共軛高分子/富勒烯複合材料的製備與特性探討。


    Conjugated polymers possess unique optical and electrical properties are investigated. These conjugated polymer/fullerene composites are widely used for optoelectronic devices due to their effective donor-acceptor energy transfer. However, they are only soluble in organic solvent that is harmful for the environment. In this study, we present and develop an environmentally friendly water-soluble conjugated polymer/fullerene composite. The conjugated polymer was poly(3-thiophene acetic acid) and it was converted to an amphiphilic polymer to make it water-soluble. We adopted the characteristic of the amphiphilic polymers to encapsulate fullerenes in water as since fullerenes are hydrophobic. The composites are not only soluble in water but also retain the donor acceptor properties. The 100 nm core-shell structures were investigated and confirmed by DLS measurement, SEM, and TEM. The existence of donor acceptor energy transfer were confirmed by PL and XPS. The characteristics of the composite, such as thermal stability and electrical conductivity, also were determined. Importantly, the conductivity of this newly-developed nanoparticles can be increased to 1.85 x 10-1 S/cm, which is higher than 4 orders of magnitude of poly(3-thiophene methyl acetate). Preparation and the characteristics of the water-soluble ionized PTAA/fullerene composite were presented in this study.

    Abstract III Acknowledgement V Contents VI List of schemes VIII List of tables VIII List of figures IX Abbreviation XI Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Water-soluble conjugated polymer 3 2.1.1 Introduction of water-soluble conjugated polymer 3 2.1.2 Water-soluble polythiophene 4 2.2 Fullerene 6 2.3 The combination of conjugated polymer and fullerene 8 2.3.1 Donor-acceptor energy transfer 8 2.3.2 Polythiophene/fullerene composite 8 2.4 Nanocomposite 9 2.5 Amphiphilic polymer 9 Chapter 3 Materials and experimental details 11 3.1 Materials 11 3.2 Experiment 11 3.2.1 Preparation of 3-thiophene methyl acetate (3TMA) 11 3.2.2 Synthesis of poly(3-thiophene methyl acetate) (P3TMA) 12 3.2.3 Hydrolysis of poly(3-thiophene methyl acetate) (P3TMA) 13 3.2.4 Ionized poly(3-thiophene acetic acid) (ionized PTAA) –fullerene composite 14 3.3 Characterization and instrumentation 15 3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 15 3.3.2 Nuclear Magnetic Resonance (NMR) 16 3.3.3 Gel Permeation Chromatography (GPC) 16 3.3.4 Critical Micelle Concentration (CMC) determination by pyrene fluorescence 17 3.3.5 Ultraviolet-Visible Spectrophotometer (UV) 19 3.3.6 Photo-Luminescence (PL) 19 3.3.7 Mean diameter measurement by Dynamic Light Scattering (DLS) 20 3.3.8 Scanning Electron Microscopy (SEM) 20 3.3.9 Transmission Electron Microscopy (TEM) 21 3.3.10 Loading content of fullerene in the composite 21 3.3.11 Raman 23 3.3.12 Zeta potential measurement 23 3.3.13 Cyclic Voltammetry (CV) 24 3.3.14 Thermogravimetric Analysis (TGA) 24 3.3.15 Differential Scanning Calorimetry (DSC) 25 3.3.16 Four point probe method 25 3.3.17 X-ray Photoelectron Spectroscopy (XPS) 26 Chapter 4 Results and discussion 27 4.1 The characteristic of ionized poly(3-thiophene acetic acid) (ionized PTAA) 27 4.1.1 Synthesis of ionized PTAA 27 4.1.2 The molecular weight of ionized PTAA 31 4.1.3 The critical micelle concentration (CMC) of ionized PTAA 32 4.2 Formation of ionized PTAA/fullerene composite 34 4.2.1 The combination of ionized PTAA and fullerene 34 4.2.2 The efficient donor/acceptor energy transfer between ionized PTAA and fullerene 37 4.2.3 The structure of ionized PTAA and the ionized PTAA/fullerene composite 39 4.2.4 Recognition of ionized PTAA/ fullerene composite by Raman and FTIR 45 4.2.5 The structure relationship of ionized PTAA/fullerene composite 49 4.2.6 The construction of ionized PTAA/fullerene composite 51 4.3 The properties of ionized PTAA/fullerene composite 53 4.3.1 Different weight ratios of ionized PTAA and fullerene 53 4.3.2 The thermal stability of the composite 59 4.3.3 The zeta potential of the composite 64 4.3.4 The electrochemical property of the composite 65 4.3.5 The electrical conductivity of the composite 67 Chapter 5 Conclusions and future work 69 Chapter 6 Reference 71

    [1] J. H. Burroughes, D. Bradley, A. R. Brown, and R. N. Marks, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-541, 1990.
    [2] H. Koezuka, A. Tsumura, and T. Ando, “Field-effect transistor with polythiophene thin film,” Synthetic Metals, vol. 18, pp. 699–704, 1987.
    [3] B.-S. Kim, H. Fukuoka, J. Ping Gong, and Y. Osada, “Titration behaviors and spectral properties of hydrophobically modified water-soluble polythiophenes,” European Polymer Journal, vol. 37, pp. 2499–2503, 2001.
    [4] M. Shao, Y. He, K. Hong, C. M. Rouleau, D. B. Geohegan, and K. Xiao, “A water-soluble polythiophene for organic field-effect transistors,” Polym. Chem., vol. 4, pp. 5270–5274, 2013.
    [5] X. Feng, L. Liu, S. Wang, and D. Zhu, “Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors,” Chem. Soc. Rev., vol. 39, pp. 2411–2419, 2010.
    [6] C.-C. Cheng, F.-C. Chang, F.-H. Ko, F.-C. Yu, Y.-T. Lin, Y.-T. Shieh, J.-K. Chen, and D.-J. Lee, “Supramolecular polymeric micelles as high performance electrochemical materials,” Journal of Materials Chemistry C, vol. 3, pp. 9528–9533, 2015.
    [7] Y. Ikenoue, N. Outani, A. O. Patil, F. Wudl, and A. J. Heeger, “Electrochemical studies of self-doped conducting polymers: Verification of the ‘cation-popping’ doping mechanism,” Synthetic Metals, vol. 30, pp. 305–319, 1989.
    [8] Jucimar M. de Souza, Ernesto C. Pereira, “Luminescence of poly(3-thiopheneacetic acid) in alcohols and aqueous solutions of poly(vinyl alcohol),” Synthetic Metals, vol. 118, pp. 167–170, 2001.
    [9] M. Prato, “[60]Fullerene chemistry for materials science applications,” Journal of Materials Chemistry, vol. 7, pp. 1097–1109, 1997.
    [10] T. Da Ros and M. Prato, “Medicinal chemistry with fullerenes and fullerene derivatives,” Chemical Communications, vol. 0, pp. 663–669, 1999.
    [11] D. M. Guldi and M. Prato, “Excited-State Properties of C60 Fullerene Derivatives,” Acc. Chem. Res., vol. 33, pp. 695–703, 2000.
    [12] S. Dai, P. Ravi, C. H. Tan, and K. C. Tam, “Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60] Fullerene-Containing Polymer,” Langmuir, vol. 20, pp. 8569–8575, 2004.
    [13] G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys., vol. 78, pp. 4510–4515, 1995.
    [14] N. S. Sariciftci, L. B. Smilowitz, C. Zhang, V. I. Srdanov, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from conducting polymers onto Buckminsterfullerene,” SPIE, vol. 1852, pp. 297–307, 1993.
    [15] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible‐ultraviolet sensitivity,” American Institute of Physics, vol. 64, pp. 3422–3424, 1994.
    [16] C. H. Lee, G. Yu, D. Moses, K. Pakbaz, C. Zhang, N. S. Sariciftci, A. J. Heeger, and F. Wudl, “Sensitization of the photoconductivity of conducting polymers by C60 : Photoinduced electron transfer,” American Physical Society, vol. 48, pp. 15425–15433, 1993.
    [17] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells,” American Institute of Physics, vol. 62, pp. 585–587, 1993.
    [18] G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer‐Fullerene Bulk‐Heterojunction Solar Cells,” Advanced Materials, vol. 21, pp. 1323–1338, 2009.
    [19] E. Holder, N. Tessler, and A. L. Rogach, “Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices,” Journal of Materials Chemistry, vol. 18, pp. 1064–1078, 2008.
    [20] I. Dimitrov, B. Trzebicka, A. H. E. Müller, A. Dworak, and C. B. Tsvetanov, “Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities,” Progress in Polymer Science, vol. 32, pp. 1275–1343, 2007.
    [21] J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society, vol. 72, pp. 1525–1568, 1976.
    [22] K. Kalyanasundaram and J. K. Thomas, “Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems,” Journal of American Chemical Society, vol. 99, pp. 2039–2044, 1977.
    [23] J. Aguiar, P. Carpena, J. A. Molina-Bolıvar, and C. Carnero Ruiz, “On the determination of the critical micelle concentration by the pyrene 1:3 ratio method,” Journal of Colloid and Interface Science, vol. 258, pp. 116–122, 2003.
    [24] D. C. Dong and M. A. Winnik, “The Py scale of solvent polarities,” Canadian Journal of Chemistry, vol. 62, pp. 2560–2565, 2011.
    [25] C. L. Zhao, M. A. Winnik, G. Riess, and M. D. Croucher, “Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers,” Langmuir, vol. 6, pp. 514–516, 1990.
    [26] L. Piñeiro, M. Novo, and W. Al-Soufi, “Fluorescence emission of pyrene in surfactant solutions,” Advances in Colloid and Interface Science, vol. 215, pp. 1–12, 2015.
    [27] V. Otero, D. Sanches, C. Montagner, M. Vilarigues, L. Carlyle, J. A. Lopes, and M. J. Melo, “Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art,” J. Raman Spectrosc., vol. 45, pp. 1197–1206, 2014.
    [28] S. Iglesias-Groth, F. Cataldo, and A. Manchado, “Infrared spectroscopy and integrated molar absorptivity of C60 and C70 fullerenes at extreme temperatures,” Monthly Notices of the Royal Astronomical Society, vol. 413, pp. 213–222, 2011.
    [29] Andrey V. Tuchin, Larisa A. Bityutskaya and Eugene N. Bormontov, “A Vibrational Strark Effect In The Fullerene C60,” Recent Advances in Biomedical & Chemical Engineering and Materials Science, pp. 121–124, 2014.
    [30] Y. M. Shul'ga, A. S. Lobach, and Y. G. Morozov, “X-ray Photoelectron Spectra and Magnetic Properties of Hydrides of Fullerenes C60H36 and C70H36,” Russian journal of Physical Chemistry, vol. 72, pp. 103-106, 1998.
    [31] J. A. Leiro, M. H. Heinonen, T. Laiho, and I. G. Batirev, “Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon,” Journal of Electron Spectroscopy and Related Phenomena, vol. 128, pp. 205–213, 2003.

    無法下載圖示 全文公開日期 2021/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE