簡易檢索 / 詳目顯示

研究生: 謝晟晏
Sheng-Yan Hsieh
論文名稱: 具有內部供體-受體異質接面的離子功能化水溶性共軛聚合物基鈣鈦礦複合材料應用於高效太陽能光伏電池
Ion-functionalized water-soluble conjugated polymer-based perovskite composites with internal donor-acceptor heterojunctions for high-efficiency solar photovoltaic cells
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 鄭智嘉
Chih-Chia Cheng
陳志平
Chih-Ping Chen
謝永堂
Yeong-Tarng Shieh
邱智瑋
Chih-Wei Chiu
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 水溶性共軛高分子水溶性聚噻吩季銨鹽鈣鈦礦太陽能電池
外文關鍵詞: water soluble conjugated polymer, water soluble polythiophene, quaternary ammonium salt, perovskite solar cells
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鈣鈦礦太陽能電池的研究一直不斷的進展,其優異的光伏性能,被視為具有發展潛力的新世代太陽能電池之一。然而,在鈣鈦礦太陽能電池的製程中,由於鈣鈦礦本身對於水氣及氧氣高度敏感,容易導致其結構缺陷的生成,影響其元件效能及穩定性。因此,典型鈣鈦礦太陽能電池的製程都是以有機溶劑作為前驅液。儘管有機溶劑有助於太陽能元件製程的發展,但對環境及生態的發展仍然相對不友善。因此如何建置環境友善的鈣鈦礦元件製程並維持其高效的元件性能,是現今各界高度關注的研究課題。
    在此次研究中,我們提出一水溶性共軛高分子誘導在鈣鈦礦介質中形成異質接面的策略,藉以增強其鈣鈦礦對水氣及氧氣的容忍性、結晶特性及光學效能。由於水溶性共軛高分子與鈣鈦礦之間存在異質接面,能夠有效鈍化鈣鈦礦於結晶時所產生的缺陷,從而改變鈣鈦礦的結晶特性,使其晶粒更加均勻及緻密。此外,也因為共軛高分子的能帶特性能有助於調控鈣鈦礦主動層之能階,促進能量的傳遞,增進其元件內部載子的傳載,最終達到18.8 %光電轉換效率。總體來說,此新興開發的系統不僅展現出特異的互補特性,未來也極具潛力應用於鈣鈦礦太陽能電池的發展。


    In recent years, research on perovskite solar cells has been continuously advancing, and its excellent photovoltaic performance has positioned them as one of the promising next-generation solar cell technologies. However, the processing of perovskite solar cells involves the use of organic solvents as a precursor solution, as perovskite itself is highly sensitive to moisture and oxygen, making it prone to the formation of structural defects that can affect device efficiency and stability. Although organic solvents have facilitated the development of the solar cell fabrication processes, they are relatively environmentally unfriendly. Therefore, creating an environmentally friendly fabrication process for perovskite devices while maintaining their high efficiency has become a highly focused research topic from both academia and industry.
    In this thesis, we propose a strategy to utilize the water-soluble conjugated polymers to induce the formation of heterojunction interfaces in perovskite matrix, in order to enhance the tolerance of perovskite to moisture and oxygen, as well as its crystalline characteristics and optical performance. The presence of a heterojunction interface between the water-soluble conjugated polymer and perovskite effectively passivates the defects generated during perovskite crystallization, leading to improved crystalline properties with more uniform and compact grains. In addition, the energy band characteristics of the conjugated polymers contribute to the control of the energy levels within the perovskite active layer, thus facilitating energy transfer and enhancing the transport of carriers within the device, eventually resulting in an impressive photoelectric conversion efficiency of 18.8 %. Overall, this newly developed system not only exhibits unique complementary properties, but also holds great potential for future applications in perovskite solar cells.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 前言 3 2.2 水溶性共軛高分子 4 2.2.1 共軛高分子概述 4 2.2.2 水溶性共軛高分子之概述與發展 6 2.2.3 雙親性共軛高分子 7 2.3 水溶性聚噻吩 9 2.3.1 水溶性聚噻吩概述 9 2.3.2 聚噻吩之聚合方式 12 2.3.3 水溶性聚噻吩之特性與應用 16 2.4 鈣鈦礦型太陽能電池 21 2.4.1 太陽能電池概述 21 2.4.2 鈣鈦礦太陽能電池概述 23 2.4.3 鈣鈦礦之缺陷與元件降解機制 26 2.4.4 鈣鈦礦太陽能電池之添加劑工程與鈍化 29 2.5 文獻回顧總結 31 第三章 實驗材料與方法 32 3.1 實驗設計 32 3.2 實驗材料 33 3.2.1 合成實驗藥品 33 3.2.2 合成實驗溶劑 35 3.2.3 元件實驗藥品 37 3.2.4 元件實驗溶劑 38 3.3 實驗設備與分析儀器 41 3.3.1 迴旋濃縮儀 ( Rotary Evaporators ) 41 3.3.2 電磁加熱攪拌器 ( Magnetic Hot Plate Stirrer ) 41 3.3.3 超音波洗淨機 ( Ultrasonic Cleaner ) 42 3.3.4 多功能試管振盪器 ( Vortex Mixer ) 42 3.3.5 高效能冷凍乾燥機 ( Freeze dryer ) 42 3.3.6 旋轉塗佈機 ( Spin Coaters ) 43 3.3.7 液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer, NMR ) 43 3.3.8 傅立葉轉換紅外光譜 ( Fourier transform infrared Spectroscopy, FTIR ) 44 3.3.9 質譜儀 ( Mass Spectrometry, MS ) 44 3.3.10 基質輔助雷射脫附游離飛行時間質譜儀 ( Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, MALDI-TOF MS ) 45 3.3.11 NCHS元素分析儀 ( Elemental Analyzer, EA ) 45 3.3.12 紫外線光譜儀 ( UV-Vis spectrophotometer, UV-Vis ) 46 3.3.13 光致螢光光譜儀 ( Photoluminescence,PL ) 46 3.3.14 電化學分析儀(Cyclic Voltammetry,CV) 47 3.3.15 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope,FE-SEM) 48 3.3.16 原子力顯微鏡 (Atomic Force Microscope,AFM) 48 3.3.17 X光射線電子能譜儀 (X-ray photoelectron spectrometer,XPS) 49 3.3.18 X-光繞射 (X-ray diffraction,XRD) 49 3.3.19 AM 1.5G太陽光模擬器 (AM 1.5G solar simulator) 50 3.4 實驗步驟 51 3.4.1 合成步驟 51 3.4.1.1 合成單體前驅物Methyl thiophene-3-acetate 52 3.4.1.2 合成單體N-[3-(Diethylamino)propyl]-2-(2-thyenyl)acetamide 53 3.4.1.3 合成高分子poly[N-[3-(Diethylamino)propyl]-2-(2-thienyl)acetamide] 54 3.4.1.4 官能化高分子protonated-poly[N-[3-(Diethylamino)propyl]-2-(2-thienyl)acetamide]-chloride 55 3.4.1.5 官能化高分子quaternary-poly[N-[3-(Diethylamino)propyl]-2-(2-thienyl)acetamide]-iodine 56 3.4.2 元件製程 57 3.4.2.1 玻璃基板之製備 57 3.4.2.2 電洞傳輸層之製備與塗佈 58 3.4.2.3 鈣鈦礦主動層之製備與塗佈 58 3.4.2.4 電子傳輸層之製備與塗佈 59 3.4.2.5 電洞阻擋層之製備與塗佈 59 3.4.2.6 銀電極之製備與熱蒸鍍 59 3.4.2.7 光伏元件量測 59 第四章 結果與討論 60 4.1 材料結構鑑定 61 4.1.1 單體材料之官能基分析 (FTIR) 63 4.1.2 單體材料之結構鑑定 (1H和13C NMR) 64 4.1.3 單體材料之元素分析 (EA) 66 4.1.4 單體材料之分子量鑑定 (LC MASS) 67 4.1.5 高分子材料P3ETA之結構鑑定 (1H NMR) 68 4.1.6 高分子材料P3ETA之分子量鑑定(MALDI-TOF MS) 69 4.1.7 官能化高分子材料之結構鑑定 (1H NMR) 71 4.1.8 高分子材料之元素鑑定 (XPS) 72 4.2 材料性質分析 73 4.2.1 高分子材料之光學性質分析 (UV-Vis、PL) 74 4.2.2 高分子材料之電化學性質分析 (CV) 76 4.2.3 高分子材料之粒徑及表面電位分析 (DLS、Zeta Potential) 77 4.2.4 高分子材料之表面形貌分析 (SEM、AFM) 79 4.2.5 高分子材料之結晶性質分析 (SAXS) 81 4.2.6 高分子材料之能級分析 (UPS) 82 4.3 鈣鈦礦太陽能電池 84 4.3.1 鈣鈦礦元件與高分子添加劑之能階探討 85 4.3.2 鈣鈦礦元件含有機溶劑添加劑之光電轉換效率 86 4.3.3 鈣鈦礦前驅液含水量測試 87 4.3.4 表面形貌分析 88 4.3.5 晶體結構分析 89 4.3.6 光學性質分析 90 4.3.7 光電轉換效率分析 91 第五章 結論 93 第六章 未來展望 94 第七章 參考文獻 95

    1. Tuncel, D. and H.V. Demir, Conjugated polymer nanoparticles. Nanoscale, 2010. 2(4): p. 484-494.
    2. Nguyen, T.N., V.-D. Phung, and V.V. Tran, Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. Biosensors, 2023. 13(6): p. 586.
    3. Heeger, A.J., Semiconducting and metallic polymers: the fourth generation of polymeric materials. 2001, ACS Publications. p. 8475-8491.
    4. Das, S., P. Routh, R. Ghosh, D.P. Chatterjee, and A.K. Nandi, Water‐soluble ionic polythiophenes for biological and analytical applications. Polymer International, 2017. 66(5): p. 623-639.
    5. Kim, B.-S., H. Fukuoka, J.P. Gong, and Y. Osada, Titration behaviors and spectral properties of hydrophobically modified water-soluble polythiophenes. European Polymer Journal, 2001. 37(12): p. 2499-2503.
    6. Zhu, C., L. Liu, Q. Yang, F. Lv, and S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chemical Reviews, 2012. 112(8): p. 4687-4735.
    7. Zhou, L., F. Lv, L. Liu, and S. Wang, Water-soluble conjugated organic molecules as optical and electrochemical materials for interdisciplinary biological applications. Accounts of Chemical Research, 2019. 52(11): p. 3211-3222.
    8. Li, K. and B. Liu, Water-soluble conjugated polymers as the platform for protein sensors. Polymer Chemistry, 2010. 1(3): p. 252-259.
    9. El-Ghoul, Y., F.M. Alminderej, F.M. Alsubaie, R. Alrasheed, and N.H. Almousa, Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers, 2021. 13(24): p. 4327.
    10. Jenekhe, S.A. and X.L. Chen, Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998. 279(5358): p. 1903-1907.
    11. Wu, D., Y. Huang, F. Xu, Y. Mai, and D. Yan, Recent advances in the solution self‐assembly of amphiphilic “rod‐coil” copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55(9): p. 1459-1477.
    12. Liu, C.-L., C.-H. Lin, C.-C. Kuo, S.-T. Lin, and W.-C. Chen, Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Progress in Polymer Science, 2011. 36(5): p. 603-637.
    13. Dai, C.-A., W.-C. Yen, Y.-H. Lee, C.-C. Ho, and W.-F. Su, Facile synthesis of well-defined block copolymers containing regioregular poly (3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. Journal of the American Chemical Society, 2007. 129(36): p. 11036-11038.
    14. Phuong Le, A., T.M. Huang, P.T. Chen, and A.C.M. Yang, Synthesis and optoelectronic behavior of conjugated polymer poly (3‐hexylthiophene) grafted on multiwalled carbon nanotubes. Journal of Polymer Science Part B: Polymer Physics, 2011. 49(8): p. 581-590.
    15. Surin, M., D. Marsitzky, A.C. Grimsdale, K. Müllen, R. Lazzaroni, and P. Leclère, Microscopic Morphology of Polyfluorene–Poly (ethylene oxide) Block Copolymers: Influence of the Block Ratio. Advanced Functional Materials, 2004. 14(7): p. 708-715.
    16. Xiao, L., Y. Chen, and K. Zhang, Efficient metal-free “grafting onto” method for bottlebrush polymers by combining RAFT and triazolinedione–diene click reaction. Macromolecules, 2016. 49(12): p. 4452-4461.
    17. Ramesan, M. and K. Suhailath, Role of nanoparticles on polymer composites, in Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends. 2017, Elsevier. p. 301-326.
    18. Moghaddam, S.I., H. Pasdar, R. Fazaeli, and S.M. Nik, Synthesis, characterization and magnetic properties of polythiophene/SrFe12-x (ZrZn) 0.5 xO19 nanocomposite as a microwave absorber. Ceramics International, 2021. 47(15): p. 20917-20922.
    19. Ho, H.A. and M. Leclerc, New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. Journal of the American Chemical Society, 2003. 125(15): p. 4412-4413.
    20. Ewbank, P.C., R.S. Loewe, L. Zhai, J. Reddinger, G. Sauvé, and R.D. McCullough, Regioregular poly (thiophene-3-alkanoic acid) s: water soluble conducting polymers suitable for chromatic chemosensing in solution and solid state. Tetrahedron, 2004. 60(49): p. 11269-11275.
    21. Yao, Z., W. Ma, Y. Yang, X. Chen, L. Zhang, C. Lin, and H.-C. Wu, Colorimetric and fluorescent detection of protamines with an anionic polythiophene derivative. Organic & Biomolecular Chemistry, 2013. 11(38): p. 6466-6469.
    22. Fonseca, S.M., R.P. Galvão, H.D. Burrows, A. Gutacker, U. Scherf, and G.C. Bazan, Selective Fluorescence Quenching in Cationic Fluorene‐Thiophene Diblock Copolymers for Ratiometric Sensing of Anions. Macromolecular Rapid Communications, 2013. 34(9): p. 717-722.
    23. Nilsson, K.P.R. and O. Inganäs, Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nature Materials, 2003. 2(6): p. 419-424.
    24. Cheng, D., Y. Li, J. Wang, Y. Sun, L. Jin, C. Li, and Y. Lu, Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chemical Communications, 2015. 51(40): p. 8544-8546.
    25. Li, Y., H. Bai, C. Li, and G. Shi, Colorimetric Assays for Acetylcholinesterase Activity and Inhibitor Screening Based on the Disassembly− Assembly of a Water-Soluble Polythiophene Derivative. ACS Applied Materials & Interfaces, 2011. 3(4): p. 1306-1310.
    26. Kaloni, T.P., P.K. Giesbrecht, G. Schreckenbach, and M.S. Freund, Polythiophene: From fundamental perspectives to applications. Chemistry of Materials, 2017. 29(24): p. 10248-10283.
    27. Matos, K. and J.A. Soderquist, Alkylboranes in the Suzuki− Miyaura coupling: Stereochemical and mechanistic studies. The Journal of Organic Chemistry, 1998. 63(3): p. 461-470.
    28. Polshettiwar, V. and Á. Molnár, Silica-supported Pd catalysts for Heck coupling reactions. Tetrahedron, 2007. 63(30): p. 6949-6976.
    29. Ozawa, F., A. Kubo, and T. Hayashi, Generation of tertiary phosphine-coordinated Pd (0) species from Pd (OAc) 2 in the catalytic Heck reaction. Chemistry Letters, 1992. 21(11): p. 2177-2180.
    30. Chinchilla, R. and C. Nájera, The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chemical Reviews, 2007. 107(3): p. 874-922.
    31. Niemi, V., P. Knuuttila, J.-E. Österholm, and J. Korvola, Polymerization of 3-alkylthiophenes with FeCl3. Polymer, 1992. 33(7): p. 1559-1562.
    32. Barbarella, G., M. Zambianchi, R. Di Toro, M. Colonna Jr, D. Iarossi, F. Goldoni, and A. Bongini, Regioselective oligomerization of 3-(alkylsulfanyl) thiophenes with ferric chloride. The Journal of Organic Chemistry, 1996. 61(23): p. 8285-8292.
    33. Das, S., D.P. Chatterjee, R. Ghosh, and A.K. Nandi, Water soluble polythiophenes: preparation and applications. RSC Advances, 2015. 5(26): p. 20160-20177.
    34. Lee, K., L.K. Povlich, and J. Kim, Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst, 2010. 135(9): p. 2179-2189.
    35. Cheng, C.-C., Y.-C. Lai, Y.-T. Shieh, Y.-H. Chang, A.-W. Lee, J.-K. Chen, D.-J. Lee, and J.-Y. Lai, CO2-responsive water-soluble conjugated polymers for in vitro and in vivo biological imaging. Biomacromolecules, 2020. 21(12): p. 5282-5291.
    36. Wei, H., G. Jin, L. Wang, L. Hao, T. Na, Y. Wang, W. Tian, H. Sun, H. Zhang, and H. Wang, Synthesis of a Water‐Soluble Conjugated Polymer Based on Thiophene for an Aqueous‐Processed Hybrid Photovoltaic and Photodetector Device. Advanced Materials, 2014. 26(22): p. 3655-3661.
    37. Li, X., Y.-C. Wang, L. Zhu, W. Zhang, H.-Q. Wang, and J. Fang, Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer. ACS Applied Materials & Interfaces, 2017. 9(37): p. 31357-31361.
    38. Sahoo, S.K., B. Manoharan, and N. Sivakumar, Introduction: Why perovskite and perovskite solar cells?, in Perovskite Photovoltaics. 2018, Elsevier. p. 1-24.
    39. Bartesaghi, D., I.D.C. Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, and L.J.A. Koster, Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 2015. 6(1): p. 7083.
    40. Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nature Photonics, 2014. 8(7): p. 506-514.
    41. Fan, J., B. Jia, and M. Gu, Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Research, 2014. 2(5): p. 111-120.
    42. Hussain, I., H.P. Tran, J. Jaksik, J. Moore, N. Islam, and M.J. Uddin, Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials, 2018. 1: p. 133-154.
    43. Song, Z., S.C. Watthage, A.B. Phillips, and M.J. Heben, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016. 6(2): p. 022001-022001.
    44. Wang, K.-C., J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, and P. Chen, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Scientific Reports, 2014. 4(1): p. 4756.
    45. NREL,Best Research-Cell Efficiency Chart. 2023; Available from: https://www.nrel.gov/pv/cell-efficiency.html.
    46. Ran, C., J. Xu, W. Gao, C. Huang, and S. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018. 47(12): p. 4581-4610.
    47. Gao, F., Y. Zhao, X. Zhang, and J. You, Recent progresses on defect passivation toward efficient perovskite solar cells. Advanced Energy Materials, 2020. 10(13): p. 1902650.
    48. Yang, J., B.D. Siempelkamp, D. Liu, and T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015. 9(2): p. 1955-1963.
    49. Boyd, C.C., R. Cheacharoen, T. Leijtens, and M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews, 2018. 119(5): p. 3418-3451.
    50. Aristidou, N., C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam, and S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017. 8(1): p. 15218.
    51. Park, J., J. Kim, H.-S. Yun, M.J. Paik, E. Noh, H.J. Mun, M.G. Kim, T.J. Shin, and S.I. Seok, Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023. 616(7958): p. 724-730.
    52. Cheng, Y. and L. Ding, Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy & Environmental Science, 2021. 14(6): p. 3233-3255.
    53. Chen, B., P.N. Rudd, S. Yang, Y. Yuan, and J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019. 48(14): p. 3842-3867.
    54. Noel, N.K., A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano, 2014. 8(10): p. 9815-9821.
    55. Wang, S., A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, and F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020. 8(25): p. 12201-12225.
    56. Luo, M., H. Ma, and F. Chen, Effects of ion pairing on the capillary electrophoretic separation and ultraviolet‐absorption detection of quaternary ammonium cations using meso‐octamethylcalix [4] pyrrole as the background electrolyte additive. Journal of Separation Science, 2015. 38(7): p. 1225-1231.
    57. Phillips, S., L. Wilson, and R. Borkman, Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. Current Eye Research, 1986. 5(8): p. 611-620.
    58. Sacksteder, L., R. Ballew, E.A. Brown, J. Demas, D. Nesselrodt, and B. DeGraff, Photophysics in a disco: Luminescence quenching of quinine. Journal of Chemical Education, 1990. 67(12): p. 1065.
    59. Huo, L., Y. Zhou, and Y. Li, Alkylthio‐substituted polythiophene: absorption and photovoltaic properties. Macromolecular Rapid Communications, 2009. 30(11): p. 925-931.
    60. Droseros, N., K. Seintis, M. Fakis, S. Gardelis, and A.G. Nassiopoulou, Steady state and time resolved photoluminescence properties of CuInS2/ZnS quantum dots in solutions and in solid films. Journal of Luminescence, 2015. 167: p. 333-338.
    61. Harada, H., T. Fuchigami, and T. Nonaka, Degradation and its prevention, and the deactivation and reactivation of electroactive polythiophene films during oxidation/reduction cycles. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 303(1-2): p. 139-150.
    62. Chiu, M.-H., W.-L. Cheng, G. Muthuraman, C.-T. Hsu, H.-H. Chung, and J.-M. Zen, A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosensors and Bioelectronics, 2009. 24(10): p. 3008-3013.
    63. Wang, Y., R. Chen, T. Li, P. Ma, H. Zhang, M. Du, M. Chen, and W. Dong, Antimicrobial waterborne polyurethanes based on quaternary ammonium compounds. Industrial & Engineering Chemistry Research, 2019. 59(1): p. 458-463.
    64. Zhang, C., K. Du, X. Zhang, X. Zheng, G. Cao, F. Zhang, and F. Feng, Optical properties of phosphonium-, quaternary ammonium-and imidazolium-substituted regioregular polythiophenes and application for imaging live cells. Dyes and Pigments, 2019. 170: p. 107581.
    65. Lee, J.H., I.S. Jin, and J.W. Jung, Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chemical Engineering Journal, 2021. 420: p. 129678.
    66. Lao, Y., S. Yang, W. Yu, H. Guo, Y. Zou, Z. Chen, and L. Xiao, Multifunctional π‐Conjugated Additives for Halide Perovskite. Advanced Science, 2022. 9(17): p. 2105307.
    67. Liu, D., C.J. Traverse, P. Chen, M. Elinski, C. Yang, L. Wang, M. Young, and R.R. Lunt, Aqueous‐Containing Precursor Solutions for Efficient Perovskite Solar Cells. Advanced Science, 2018. 5(1): p. 1700484.
    68. Heo, J.H., D.H. Song, and S.H. Im, Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin‐coating process. Advanced Materials, 2014. 26(48): p. 8179-8183.
    69. Chung, C.-C., S. Narra, E. Jokar, H.-P. Wu, and E.W.-G. Diau, Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. Journal of Materials Chemistry A, 2017. 5(27): p. 13957-13965.

    無法下載圖示 全文公開日期 2033/08/26 (校內網路)
    全文公開日期 2033/08/26 (校外網路)
    全文公開日期 2033/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE