簡易檢索 / 詳目顯示

研究生: 林暐璇
Wei-Syuan Lin
論文名稱: 應用於智慧聯網裝置雛型之使用者經驗工具開發與驗證
Development and Verification of a User Experience Evaluation Tool for Prototypes of Smart IoT Devices
指導教授: 林承哲
Cheng-Jhe Lin
口試委員: 林久翔
Chiuh-Siang Lin
溫明輝
Ming-Hui Wen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 146
中文關鍵詞: 使用者經驗智慧聯網裝置物聯網產品雛型開發
外文關鍵詞: Product Prototype
相關次數: 點閱:237下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代變遷與科技日新月異的發展,評估使用者與產品互動相關的工具與方法更趨於人性化,不再僅限於產品的使用性(usability),其中又以使用者經驗的應用為現今發展之主流。然而,過去文獻裡的使用者經驗評估工具,對於發展中的產品,多針對產品開發的不同階段個別進行探討,卻忽略不同階段間存在的關聯性,並且對開發中產品進行使用者經驗評估時,缺乏有關整體架構的相關討論。因此本研究透過使用者原有需求、認知產生與情感體驗等三階段使用者經驗模型的建立,發展動態的關聯架構圖,將概念、功能與體驗階段的雛形產品緊密相連,並且以近年發展蓬勃的智慧聯網裝置為應用對象,開發出一個針對智慧聯網裝置產品雛型進行使用者經驗評估的完整工具。
    本研究透過文獻探討,找到智慧聯網裝置與使用者經驗重要的特性,並建構出三階段使用者經驗評估方法:第一階段利用質化開放式的問題,進行設計思考發想活動;第二階段以質化檢核表的方式,進行判別與分類活動;第三階段則使用量化問卷,計算評分結果給予評等。三階段總共有10項產品參與驗證活動,每個階段至少有5項不同的智慧聯網裝置。驗證結果顯示:第一階段5項產品,能夠提出平均22項有助於提升產品使用者經驗的功能特性;第二階段7項產品,從總數27題(簡化版)的評估項目中,可觀察到「新穎」、「簡單容易、便利」、「有用」、「穩定可靠」與「合適」(無安全疑慮、無疲勞或疼痛並符合人體工學)是現今智慧聯網裝置設計概念的主流;第三階段7項產品當中有2項產品被判定為潛力有限、2項產品為有部分潛力、2項產品為有潛力以及1項產品為非常有潛力。未來有關應用於產品雛型的使用者經驗工具,可參考本研究的驗證結果,作為評估工具的發展基礎。最後本研究建議可利用較完整的版本進行測試,讓第二階段評估結果更加詳盡,並增加驗證的產品數量,提高第三階段評等準則的有效性使之更具參考價值。


    Technology advances with the changing of times and evaluation tools for technological products focus more on humanity now in addition to usability. Among their revolution, the application of User Experience (UX) has already become the main stream. However, the UX methods in the literature paid less attention to the relevance between different stages in developing products and evaluated prototypes at stages separately. In addition, the lack of an overall structure for evaluating product prototype was problematic. Therefore, this study established a UX evaluative framework based on a 3-tier UX model- user needs generation, user perception fitting and attribution of user affection- to integrate the assessment of prototypes at different design stages. The UX evaluation tool aimed to facilitate developing smart Internet of Things (IoT) devices.
    Through literature review, important features of UX relevant to smart IoT devices were found. Then these features were used to establish a three-stage UX evaluation approach. In stage one, design thinking activity was carried out with an open-ended questionnaire. In stage two, discrimination and classification using a qualitative checklist were required. In stage three, the product was evaluated by a score sheet and UXPG (User Experience Potential Grade) was given based on the results. There were ten products evaluated to verify the practicality of the UX tool, and at least five different products were evaluated at each stage. The results of the verification activities showed that the participants could on average generate 22 UX enhancing features for each of the five products in stage one. Then, in stage two “novel,” “simple & convenient,” “useful,” “reliable,” and “suitable” were found to be the main stream concepts in the design of smart IoT devices using the simplified version of the technique. At the final stage, there were two products graded as having Limited Potential, two products graded as having Partial Potential, two products graded as having Fair Potential, and only one product graded as having Great Potential. This study could contribute to designing future UX evaluation tools and the validation results can be used as a basis to UX evaluation tools. Finally, future studies may consider utilizing the complete version of stage two in that the results from the qualitative checklist can be more detailed. Finally, increasing the number of verified products was suggested so that the UXPG can be much more valid to be a valuable reference.

    目錄 摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究架構與流程 3 第二章 文獻探討 4 2.1 智慧聯網裝置 4 2.2 使用者經驗 5 2.3 使用者經驗與使用性 6 2.4 使用者經驗評估工具 10 第三章 研究方法發展 14 3.1 使用者經驗工具發展 14 3.1.1 使用者經驗階段關聯架構 19 3.2 第一階段 22 3.2.1 判別方式 23 3.2.2 執行方法 23 3.2.3 結果產出 24 3.3 第二階段 25 3.3.1 判別方式 25 3.3.2 執行方法 25 3.3.3 結果產出 26 3.4 第三階段 27 3.4.1 判別方式 28 3.4.2 執行方法 28 3.4.3 結果產出 29 3.5 簡化版 30 3.6 功能與特性建議矩陣 30 第四章 實例驗證 33 4.1 MOOREDOLL 34 4.1.1 第二階段 34 4.1.2 第三階段結果與建議 36 4.2 UNDOBOX 38 4.2.1 第一階段 39 4.2.2 第二階段 41 4.2.3 第三階段第一次實測結果與建議 43 4.2.4 第三階段第二次實測結果與建議 45 4.3 貓咪智慧飲水器 46 4.3.1 第一階段 46 4.3.2 第二階段 49 4.3.3 第三階段結果與建議 52 4.4 EDUBOT互動學習機器人 52 4.4.1 第一階段 52 4.5 語言互動學習機器人 54 4.5.1 第一階段 54 4.6 互動競技場 56 4.6.1 第二階段 56 4.6.2 第三階段結果與建議 57 4.7 別鬧了費爾與安格 59 4.7.1 第一階段 59 4.8 小米手環2 61 4.8.1 第二階段 61 4.8.2 第三階段結果與建議 63 4.9 小米體重計 65 4.9.1 第二階段 66 4.9.2 第三階段結果與建議 67 4.10 AISTRIP智慧插座 68 4.10.1 第二階段 69 4.10.2 第三階段結果與建議 71 第五章 結論與建議 72 5.1 結論 72 5.1.1 第一階段 72 5.1.1 第二階段 73 5.1.2 第三階段 74 5.2 討論及建議 75 5.2.1 第一階段 75 5.2.2 第二階段 76 5.2.3 第三階段 77 5.2.4 三階段架構關聯圖與功能特性建議矩陣 80 5.3 研究限制與未來研究方向 81 參考文獻 83 附錄一 第一階段需求滿足問項 88 附錄二 第二階段認知評估檢核項目 89 附錄三 狩野模型KANO圖例與說明 91 附錄四 第三階段情感評分題目 92 附錄五 簡化版第二階段檢核項目 97 附錄六 簡化版第三階段評分題目 99 附錄七 功能特性建議矩陣查表 103 附錄八 Cubetto活動體驗量表 107 附錄九 Mooredoll測試流程與活動體驗量表 108 附錄十 Undobox第一階段初始資料 111 附錄十一 Undobox活動體驗量表 113 附錄十二 貓咪智慧飲水器第一階段初始資料 114 附錄十三 貓咪智慧飲水器活動體驗量表 118 附錄十四 EduBot 互動學習機器人第一階段初始資料 120 附錄十五 語言互動學習機器人第一階段初始資料 121 附錄十六 互動競技場產品活動體驗量表 122 附錄十七 別鬧了費爾與安格第一階段初始資料 123 附錄十八 小米手環2活動體驗量表 125 附錄十九 小米體重計活動體驗量表 127 附錄二十 AiStrip智慧插座活動體驗量表 129

    [1] Zimmermann, P. G. (2008). Beyond usability–measuring aspects of user experience (Doctoral dissertation, Swiss Federal Institute of Technology Zurich).
    [2] Vermeeren, A. P., Law, E. L. C., Roto, V., Obrist, M., Hoonhout, J., & Vaananen-Vainio-Mattila, K. (2010, October). User experience evaluation methods: current state and development needs. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries (pp. 521-530). ACM.
    [3] Hassenzahl, M. (2008, September). User experience (UX): towards an experiential perspective on product quality. In Proceedings of the 20th Conference on l'Interaction Homme-Machine (pp. 11-15). ACM.
    [4] Hassenzahl, M. (2010). Experience design: Technology for all the right reasons. Synthesis Lectures on Human-Centered Informatics, 3(1), 1-95.
    [5] Hassenzahl, M., & Tractinsky, N. (2006). User experience-a research agenda. Behaviour & information technology, 25(2), 91-97.
    [6] Hassenzahl, M., Diefenbach, S., & Goritz, A. (2010). Needs, affect, and interactive products–Facets of user experience. Interacting with computers, 22(5), 353-362.
    [7] Laugwitz, B., Held, T., & Schrepp, M. (2008, November). Construction and evaluation of a user experience questionnaire. In Symposium of the Austrian HCI and Usability Engineering Group (pp. 63-76). Springer Berlin Heidelberg.
    [8] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
    [9] Evans, D. (2011). The Internet of Things. Cisco Blog. Available from :http://blogs.cisco.com/news/the-internet-of-things-infographic/

    [10] International Standardization Organization (ISO) 9241-210. (2010). Ergonomics of human system interaction - Part 210: Human-centred design for interactive systems (formerly known as 13407). International Standardization Organization.
    [11] Kujala, S., & Väänänen-Vainio-Mattila, K. (2009). Value of information systems and products: Understanding the users' perspective and values. Journal of Information Technology Theory and Application (JITTA), 9(4), 4.
    [12] Sproll, S., Peissner, M., & Sturm, C. (2010, October). From product concept to user experience: exploring UX potentials at early product stages. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, (pp. 473-482). ACM.
    [13] Wright, P., McCarthy, J., & Meekison, L. (2005). Making sense of experience. Funology, 45-56.
    [14] Janlert, L. E., & Stolterman, E. (1997). The character of things. Design Studies, 18(3), 297-314.
    [15] Mono, R. (1997). Design for product understanding: the aesthetics of design from a semiotic approach. Liber AB, Stockholm.
    [16] Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7), 97-114.
    [17] 杜紫軍, (2014年9月), 走向智慧聯網引領產業新革命, 創新樂活, 32. 取自https://www.moea.gov.tw/Mns/populace/news/wHandEpaper_File.ashx?ec_id=32.
    [18] Council, N. (2008). Six technologies with potential impacts on us interests out to 2025. Disruptive Civil Technologies2008.
    [19] Yang, L., Yang, S. H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854-1867.
    [20] Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communications Surveys & Tutorials, 16(1), 414-454.
    [21] DIGITIMES企劃, (2015年2月), 智慧聯網裝置的儲存解決方案與技術, DIGITIMES物聯網, 取自http://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000412343_O874C08I3NNV774EM9BES.
    [22] Roman, R., Zhou, J., & Lopez, J. (2013). On the features and challenges of security and privacy in distributed internet of things. Computer Networks, 57(10), 2266-2279.
    [23] Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2015, December). Internet of things (IoT) security: Current status, challenges and prospective measures. In Internet Technology and Secured Transactions (ICITST), 2015 10th International Conference for (pp. 336-341). IEEE.
    [24] 林志達, (2015), 泛談智慧聯網安全, 電工通訊季刊, 35-41.
    [25] Kahneman, D. (1999). Objective happiness. Well-being: The foundations of hedonic psychology, 3, 25.
    [26] Law, E. L. C., Roto, V., Hassenzahl, M., Vermeeren, A. P., & Kort, J. (2009, April). Understanding, scoping and defining user experience: a survey approach. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 719-728). ACM.
    [27] Forlizzi, J., & Battarbee, K. (2004, August). Understanding experience in interactive systems. In Proceedings of the 5th conference on Designing interactive systems: processes, practices, methods, and techniques (pp. 261-268). ACM.
    [28] Desmet, P., & Hekkert, P. (2007). Framework of product experience. International journal of design, 1(1).
    [29] International Organization for Standardization (ISO). (1998). Ergonomic requirements for office work with visual display terminals (VDT) s-Part II Guidance on Usability (ISO/IEC 9241-11). International Organization for Standardization.
    [30] Kaye, J. J. (2007, April). Evaluating experience-focused HCI. In CHI'07 extended abstracts on Human factors in computing systems (pp. 1661-1664). ACM.
    [31] Mäkelä, A., & Fulton Suri, J. (2001, June). Supporting users’ creativity: Design to induce pleasurable experiences. In Proceedings of the International Conference on Affective Human Factors Design (pp. 387-394).
    [32] Bevan, N. (2009, August). What is the difference between the purpose of usability and user experience evaluation methods. In Proceedings of the Workshop UXEM (Vol. 9, pp. 1-4).
    [33] Hassenzahl, M. The thing and I: Understanding relationship between user and product. 2003. Funology: From Usability to Enjoyment. Kluwer, 31-42.
    [34] Röbig, S., Didier, M., & Bruder, R. (2011). 13 Ergonomics and Usability in an International Context. Human Factors and Ergonomics in Consumer Product Design: Uses and Applications, 213.
    [35] Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: A questionnaire to measure perceived hedonic and pragmatic quality. In Mensch & Computer (pp. 187-196).
    [36] Sheldon, K. M., Elliot, A. J., Kim, Y., & Kasser, T. (2001). What is satisfying about satisfying events? Testing 10 candidate psychological needs. Journal of personality and social psychology, 80(2), 325.
    [37] Efron, R. (1969). What is perception?. In Proceedings of the Boston Colloquium for the Philosophy of Science 1966/1968 (pp. 137-173). Springer Netherlands.
    [38] Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063.
    [39] Kano, N. (1984). Attractive quality and must-be quality. J. Jpn. Soc. Quality Control, 14, 39-48.
    [40] 張玉琦,(2016年3月), 狩野模型Kano model為什麼產品升級了顧客卻沒有更滿意,經理人.取自https://www.managertoday.com.tw/glossary/view/192.
    [41] García-Melón, M., Gómez-Navarro, T., & Acuña-Dutra, S. (2012). A combined ANP-delphi approach to evaluate sustainable tourism. Environmental Impact Assessment Review, 34, 41-50.
    [42] Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1-31.

    QR CODE