簡易檢索 / 詳目顯示

研究生: 陳正欽
Cheng-chin Chen
論文名稱: 以關節位置命令為基礎之機械手臂阻抗控制之實現
Joint position command based implementation of impedance control for robot arm
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 黃昌群
Chang-Chiun Huang
溫哲彥
Che-Yen Wen
林其禹
Chyi-Yeu Lin
彭勝宏
Sheng-Hong Pong
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 阻抗控制順應性控制位置控制
外文關鍵詞: impedance control, compliance control, position control
相關次數: 點閱:480下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應用於工業上的機器人執行任務時,往往會無法完全預期外界環境,所以會與外界環境產生意外碰撞而導致硬體上的損壞。為了避免上述情況,必須得加入順應性運動控制(例如:阻抗控制),使得手臂碰撞到外界環境能產生順應能力。傳統阻抗控制必須推導系統的動態模型,因此會增加阻抗控制之困難度。故本研究提出直接以關節位置命令來實現機械手臂之阻抗控制,當遇到外界干擾時,利用位置補償來調整接觸力,使得機械手臂能順應外界環境。在機械手臂順應外力方面,針對阻抗參數與任務的需求進行調整,進而控制機械手臂之順應性。最後在三種不同環境面,進行順應環境面之實驗,由結果驗證無論環境面之剛性大小,機械手臂皆能順應環境面移動,形成保護硬體之機制。


    When the industrial robot carries out the task, it often can not completely expected external environment, therefore the accident collision with the external environment to cause damage of the robot arm. In order to avoid above-mentioned situations, we must join in the compliance motion control (ex: impedance control), making it having compliant ability when crashing to the external environment. The impedance control must derive the dynamic model of the system, it will increase difficulty of impedance control. Accordingly, implement of impedance control for robot arm by joint position command is proposed. When robot arm contact with environment, use the position command to adjust the force of environment, the robot arm to comply with the environment. The experiment of compliance the force in the robot arm, according to requirement for the task adjust impedance model parameter, then control compliance of robot arm. Finally, according to the experiment result of robot arm comply with in three kinds of different environments, robot arm can comply with environment moving and protect the hardware.

    摘要 I Abstract II 誌謝 III 目錄 V 圖索引 VII 表索引 IX 第一章. 緒論 1 1.1 前言 1 1.2 順應性運動控制之研究背景 2 1.2.1 被動式順應性運動控制 3 1.2.2 主動式順應性運動控制 4 1.2.2.1 混合運動控制(Hybrid motion control) 4 1.2.2.2 阻抗控制(Impedance control) 5 1.3 研究動機與目的 8 1.4 論文架構 9 第二章. 研究方法 10 2.1 阻抗控制基礎理論 10 2.2 實現阻抗特性之控制機制 15 第三章. 實驗設備建構 17 3.1 二軸機械手臂實驗平臺介紹 17 3.2 機械手臂運動學分析 21 3.1.1 正向運動學 23 3.1.2 反向運動學 25 3.3 實驗設備硬體整合介紹 27 第四章. 實驗設計與討論 29 4.1機械手臂順應外力之實驗 29 4.1.1 實驗流程設計 29 4.1.2 實驗結果 31 4.2 機械手臂接觸環境面之實驗 41 4.2.1 實驗流程設計 41 4.2.2 實驗結果 45 第五章. 結論與未來展望 48 參考文獻 49

    [1] Anderson R. J., Spong M. W., “Hybrid Impedance Control of Robotic Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 4, No. 5, pp. 549-556, 1988.
    [2] Antnio Lopes and Fernando Almeida, “A force-impedance controlled industrial robot using an active robotic auxiliary device,” Robotics and Computer Integrated Manufacturing, Vol. 24, Issue 3, pp. 299-309, 2008.
    [3] Fernandez B., Bae G.W., Everett L.J., “Control of robot manipulator through robust sliding linearization,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Prof. Stefano Stramigioli, Cincinnati, OH, USA, Vol. 2, pp. 124-129, 13-18 May 1990.
    [4] Goldenberg A.A., “Implementation of Force and Impedance in Robot Manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, Vol. 3, pp. 1626-1632, 24-29 Apr 1988.
    [5] Gonzalez, J.J. and Widmann, G.R., “A force commanded impedance control scheme for robots with hard nonlinearities,” IEEE Transactions on Control Systems Technology, Vol. 3, No. 4, pp. 398-408, 1995.
    [6] Hogan N., “Impedance Control:An Approach to Manipulation:Part1-Theory, Part2-Implementation, Part3-An Approach to Manipulation,” ASME Journal of Dynamic System, Measurement, and Control, Vol. 107, pp. 1-24, 1985.
    [7] Kazerooni H., “Robust Compliant Motion : Impedance Control,” Proceedings of the IEEE International Conference on Robotics and Automation, Prof. Stefano Stramigioli, Albuquerque, New Mexico, United States, Vol. 2, pp. 185-188, 1986.
    [8] Lawrence D. A., “Impedance Control Stability Properties in Common Implementations,” IEEE Conference of Robotics and Automation, Prof. Stefano Stramigioli, Philadelphia, PA, USA, Vol. 2, pp. 1185-1190, 24-29 Apr. 1988.
    [9] Liu G. J., Goldenberg A.A., “Robust hybrid impedance control of robot manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation, Prof. Stefano Stramigioli, Sacramento, CA, USA, Vol. 1, pp. 287-292, 9-11 Apr. 1991.
    [10] Lonnie J. and Wayne J., ”Force Reflecting Tele-operation With Adaptive Impedance Control,“ IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, Vol. 34, No. 1, pp. 159-165, 2004.
    [11] Mason, M.T., “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 6, pp. 418-432, 1981.
    [12] Paul R., Shimano B., “Compliance and control,” Proceedings of Joint Automatic Control Conference, New York, pp. 694-699, 1976.
    [13] Raibert, M.H. and Craig J.J., “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 103, pp. 275-282, 1981.
    [14] Salisbury J. K “Active Stiffness Control of a Manipulator in Cartesian Coordinates,” Proceedings of 19th IEEE Conference on Dec. and control, Stanford California, Vol. 19, pp. 95-106, Dec. 1980.
    [15] Spong M. W., Hutchinson H., Vidyasagar M., Robot Modeling And Control, John Wiley and Sons, New York, pp.73-83(2006).
    [16] Whitney, D. E., “Quasi-Static Assembly of Compliantly Supported Rigid Part,” Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 104, No. 1, pp. 65~77, 1982.
    [17] Yoshikawa, T., “Force control of robot manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, Prof. Stefano Stramigioli, San Francisco, CA, USA, Vol. 1, pp. 220-226, 24-28 Apr. 2000.
    [18] http://www.ati-ia.com/products/compliance/Compensator_main.aspx

    QR CODE