簡易檢索 / 詳目顯示

研究生: 林郁書
Yu-Shu Lin
論文名稱: 射頻辨識微帶陣列天線及相關電路之研製
A Study on RFID Microstrip Array Antennas and Associated Circuits
指導教授: 楊成發
Chang-Fa Yang
口試委員: 馬自莊
Tzyh-Ghuang Ma
廖文照
Wen-Jiao Liao
曾昭雄
Chao-Hsiung Tseng
李學智
Hsueh-Jyh Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 射頻辨識被動式金屬標籤饋入網路近場通訊波束合成巴特矩陣非對稱人工傳輸線
外文關鍵詞: feed network, near-field communication, beam-switched, bulter matrix, asymmetric artificial transmission line
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將針對不同應用之射頻辨識讀取器天線、被動式金屬標籤天線以及波束合成饋入網路進行研究及設計。首先,為了提升讀取器陣列天線於遠場應用之增益或效率,乃利用較高寬長比之微帶天線或設計串聯饋入式網路來達成目標。其次,在近場讀取辨識方面,則運用矩形空腔來有效聚集微帶天線於近場之電場分佈,並且設計一個特定相位輸出之饋入網路來輔助電場集中效果,藉以提高近場通訊之電子標籤辨識率。
    在被動式金屬標籤天線設計方面,本論文乃以槽孔天線的形式來加以實現,其無需額外之匹配電路即可達到與IC阻抗共軛匹配。另外,由於槽孔天線的電場主要分佈於槽縫中,因此將可大幅降低標籤附著物之金屬表面對於標籤天線輻射體的影響。
    另ㄧ方面,關於智慧型天線所需之波束合成網路,本論文亦應用4×4巴特矩陣架構來設計之,並配合一般/新型式非對稱的人工傳輸線以及本論文所提出的交叉跨線來微型化電路尺寸。本文設計了兩款4×4巴特矩陣電路,其尺寸跟傳統4×4巴特矩陣相較之下,分別僅為5.7%以及4.8%。


    In this thesis, some useful reader antennas, passive metal tag antennas and beam forming feed networks for various radio frequency identification (RFID) applications are carefully investigated and designed. Firstly, to flexibly enhances the gain or efficiency of the reader antenna, a much wider microstrip antenna or a series feed network is employed to help of an array antenna design for far-field operation. On the other hand, in order to gather the RF energy for near-field application, a rectangular cavity and a particular phase feed network also have been used to enhance electric field distribution for reader antenna design. Thus a better performance of tag identification can be achieved for near-field communications.
    Moreover, a passive metal tag antenna to be mounted on a metallic object is also presented in this study. The tag antenna without additional matching circuit utilizes slot configuration to obtain a good conjugate match between the tag IC and antenna. Also, effects from metallic surface to the antenna may be reduced well due to electric field mainly concentrated within the slot.
    This thesis also studies a smart antenna using 4 by 4 bulter matrix to achieve beam forming function, where the ordinary/newly asymmetric artificial transmission lines and proposed crossover are all employed to miniaturize circuit size. Compared with traditional 4 by 4 bulter matrix structure, the occupied dimensions of proposed two circuits are about only 5.7% and 4.8%, respectively.

    摘 要 I ABSTRACT II 目 錄 III 圖 目 錄 V 表 目 錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 章節概述 2 第二章 射頻辨識系統概述 3 2.1 射頻辨識系統簡介 3 2.2 結語 8 第三章 922MHz陣列天線及標籤天線設計 9 3.1 微帶天線理論 9 3.2 8×1微帶線陣列天線設計與分析 11 3.3 金屬標籤天線設計與分析 17 3.4 922MHz陣列天線及標籤之應用 24 3.5 結語 28 第四章 2.4GHz微帶陣列天線及應用 29 4.1 2×2寬頻微帶陣列天線 29 4.2 1×2超高寬長微帶陣列天線 35 4.3 4×1串列式電容性耦合微帶陣列天線 41 4.4 2×3近場能量集中微帶陣列天線 48 4.5 結語 57 第五章 2.4GHz 4極化微帶陣列天線 59 5.1 天線極化與可變極化天線 59 5.2 雙饋入交錯型微帶天線 61 5.3 可變輸出相位差之陣列天線雙饋入網路 66 5.4 4極化微帶陣列天線 71 第六章 5.8GHz串列饋入式微帶陣列天線 77 6.1 10×1串列饋入式微帶陣列天線 77 6.2 10×2串列饋入式微帶陣列天線 82 6.3 20×2串列饋入式微帶陣列天線 85 6.4 10×4串列饋入式微帶陣列天線 88 6.5 10×8串列饋入式微帶陣列天線 97 6.6 具有諧波抑制功能之10×1串列饋入式微帶陣列天線 109 6.7 結語 113 第七章 922MHz 微型化波束形成器設計 115 7.1 微型化90度方向耦合器 116 7.2 交叉跨線 123 7.3 微型化四波束形成器之設計 125 7.4 天線陣列設計 133 7.5 智慧型天線系統 136 7.6 結語 141 第八章 結論 142 參考文獻 144

    [1] P. V. Nikitin and K. V. S. Rao, “Theory and measurement of backscattering from RFID tags” IEEE Mag. Antennas Propag., vol. 48, no. 6, pp. 212-218, Dec. 2006.
    [2] R. Want, “An introduction to RFID technology,” IEEE Mag. Vol. 5, no. 4, pp. 25-33, Mar. 2006.
    [3] Daniel M. Dobkin, The RF in RFID, Newnes, 2008.
    [4] V. Chawla, Dong Sam Ha, “An overview of passive RFID,” IEEE Communcation Mag. Vol. 45, no. 9, pp. 11-17, Sep. 2007.
    [5] H. Rhyu, F. J. Harackiewicz, B. Lee, “ Wide coverage area of UHF-band RFID system using a pattern reconfigurable antenna, ” Microwave Opt Technol Lett., vol. 49, no. 9, pp. 2154-2157, Sep. 2007.
    [6] Z.-H. Wu, S.-l. Lai, “Miniaturized microstrip array for the UHF-band RFID reader,” Microwave Opt Technol Lett., vol. 48, no. 7, pp. 1299-1301, Jul. 2006.
    [7] B. Lee, B. Yu, “Compact structure of UHF band RFID tag antenna mountable on metallic objects,” Microwave Opt Technol Lett., vol. 50, no. 1, pp. 232-234, Jan. 2008.
    [8] B. Yu, S.-J. Kim, B. Jung, F. J. Harackiewicz, B. Lee, “RFID tag antenna using two-shorted microstrip patches mountable on metallic objects,” Microwave Opt Technol Lett., vol. 49, no. 2, pp. 414-416, Feb. 2007.
    [9] S.-Y Chen, P. Hsu, “CPW-fed folded-slot antenna for 5.8 GHz RFID tags,” Electron. Lett., vol. 40, no. 24, pp. 1516-1517, Nov. 2004.
    [10] A. Balanis, Antenna Theory, third edition, Wiley-Interscience, 2005.
    [11] S.-J. Kim, B. Yu, Y.-S. Chung, F. J. Harackiewicz, B. Lee, “Patch-type radio frequency identification tag antenna mountable on metallic platforms,” Microwave Opt Technol Lett., vol. 48, no. 12, pp. 2446-2448, Dec. 2006.
    [12] L. Ukkonen, M. Schaffrath, D. W. Engels, L. Sydanheimo, M. Kivikoski, “Operability of Folded Microstrip Patch-Type Tag Antenna in the UHF RFID Bands Within 865-928 MHz,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 414–417, Dec. 2006.
    [13] H. Kwon, B. Lee, “Compact slotted planar inverted-F RFID tagmountable on metallic objects,” Electron. Lett., vol. 41, no. 24, pp. 1308-1310, Nov. 2005.
    [14] K. Kurokawa,“Power waves and the scattering matrix,” IEEE Trans. Micro. Theory Tech., vol. Mtt-13, no. 3, pp. 194-202, Mar. 1965.
    [15] K. V. Seshagiri, P. V. Nikitin Rao and S. F. Lam,“Antenna design for UHF RFID tags: a review and a practical application,” IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 3870-3876, Dec. 2005.
    [16] F. Yang, Xue-Xia Zhang, Xiaoning Ye and Y. Rahmat-Samii, “Wide-band E-shaped patch antennas for wireless communications,” IEEE trans. Antennas Propag., vol. 49, no. 7, pp. 1094-1100, July 2001.
    [17] D. M. Pozar,“A microstrip antenna aperture coupled to microstripline,” Electron. Lett., vol. 21, pp. 49-50, Jan. 1985.
    [18] M. Bogosanovic and A.G. Williamson, “Microstrip Antenna Array With a Beam Focused in the Near-Field Zone for Application in Noncontact Microwave Industrial Inspection,” IEEE trans. Instrum. Meas., vol. 56, no. 6 pp. 2186-2195, Dec. 2007.
    [19] S. Gao, A. Sambell, and S. S. Zhong, “Polarization-Agile Antennas,” IEEE trans. Antennas Propag., Vol. 48, no. 3, pp. 28-37, Jun. 2006.
    [20] G. B. Gentili, C. Salvador, “New serially fed polarisation-agile linear array of patches,” IEE Proc. H, Microw. Antennas Propag., Vol. 145, no. 5, pp. 392-396, Oct. 1998.
    [21] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, ARTECH HOUSE, 1996.
    [22] C. Li, and F. Li,“Microstrip bandpass filters based on zeroth-oder resonators with complementary split ring resonators,” IET Microw. Antennas Propag., vol. 3, no. 2, pp. 276-280, Jun. 2009.
    [23] J. Bonache, M. Gil, I.Gil, J. Garcia-Garcia, F. Martin, “On the electrical characteristics of complementary metamaterial resonators,” IEEE Microwave Wireless Comp. Lett., vol. 16, no. 10, pp.543–545, Oct. 2006.
    [24] C. C. Wang, T. G. Ma, and C. C. Yang “A New Planar Artificial Transmission Line and Its Applications to a Miniaturized Butler Matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
    [25] T. Metzler,“Microstrip series arrays,” IEEE trans. Antennas Propag., Vol. 29, no. 1 , pp. 174-178, Jan. 1981.
    [26] M. A. Hiranandani, A. A. Kishk, “Widening Butler matrix bandwidth within the X-band,” IEEE AP-S Int. Symposium, vol. 4A, pp. 321-324, July 2005.
    [27] Z. Sun, S.-S. Zhong, X.-R. Tang, and K.-D. Chen, “Low-sidelobe circular-polarized microstrip array for 2.45GHz RFID readers,” Microwave Opt Technol Lett., vol. 50, no. 9, pp. 2235-2237, Sep. 2008.
    [28] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-Line Circuits, ARTECH HOUSE, 2007.
    [29] C.-W. Tang, and H.-H. Liang, “Parallel-Coupled Stacked SIRs Bandpass Filters With Open-Loop Resonators for Suppression of Spurious Responses,” IEEE Microwave Wireless Comp. Lett., vol. 15, no. 11, pp.802–804, Nov. 2005.
    [30] C.-H. Tseng, C.-J. Chen, and T.-H. Chu, “A Low-Cost 60-GHz Switched-Beam Patch Antenna Array With Butler Matrix Network,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 432–435, 2008.
    [31] T. A. Denidni, M. Nedil, “Experimental investigation of a new butler matrix using slotline technology for beamforming antenna arrays,” IET Microw. Antennas Propag., vol. 2, no. 7, pp. 641-649, Feb. 2008.
    [32] M. Cooper, and M. G. Goldburg, “Intelligent Antennas: Spatial Division Multiple Access,” Annual Review of Communications, pp.997-999, 1996.
    [33] 李昆樺, 射頻辨識讀取器近場天線與主動式相位陣列天線之研製. 國立台灣科技大學電機工程研究所碩士論文, 民國97年
    [34] H. Wang and L. Zhu, “Ultra-wideband bandpass filter using back-to back microstrip-to-CPW transition structure,” Elecron. Lett., vol. 41, no. 24, pp. 1337-1338, Nov. 2005.
    [35] M.-R., Gordon, J. W. Odendaal, J. Joubert, “Single-layer capacitive feed for wideband probe-fed microstrip antenna elements,” IEEE trans. on Antennas and Propag., Vol. 51, no. 6, pp. 1405-1407, Jun. 2003.
    [36] 李瑋仁, 四波束切換式智慧型陣列天線之研製. 國立中山大學電機工程研究所碩士論文, 民國92年

    無法下載圖示 全文公開日期 2014/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE